AD-771 157

THE INTERACTION OF A HYPERSONIC PLUME
WITH AN EXTERNAL HYPERSONIC STREAM

John T. Kelly

Polytechnic Institute of Brooklyn

Prepared for:
Army Research Office-Durham

Advanced Research Projects Agency

July 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT dF COMMERCE
5285 Port Royal Road, Soringfield Va. 22151




Unclassified

R /) 77//5/7

DOCUMENT CONTROL DATA-R&D

(Secutity clasaitication of titie, budy of abairect and indering ennotation muet ba entared whan iha overall report ie ciaseilied) m

' ORIGINATING ACTIVITY (Cofprorate suthor) 28, REPORYT SECURITY CLASSIFICATION

Polytechnic Institute of Brooklyn L Unclassified

Dept. of Aerospace Eng. & Applied Mechanics 26, GROUP
Route 110, Farmingdale, Mew York 11735

3 REPORT TITLE

THE INTERACTION OF A HYPERSONIC PLUME WITH AN EXTERNAL HYPERSONIC STREAM

4. DESCRIPTIVE NOTES (Type of raport and Inclusiva dates)
Research Report

8. AU 'HORI(S) (First nama, middla initial, last name)

John T. Kelly

¢ REPORT DATE 74, TOTAL NO. OF PAGES 7b. NO. OF REFS
£
July 1973 1535 /S 36
88. CONTRACTY OR GRANTY NO. va. OR'dINATOR'S REPORT NUMBERIS)

DAHC04-69~C-0077

b. PROJECT NO.

PIBAL Report No. 73-12

<. ARPA Order No. 1442 ’ Amendment 2 9b. OTHER REPORT NO(S) (Any other numbere that may ba sesigned

thie report)
. Program Code 9E30

10 DISTRIBUTION STATEMENT

Approved for publiic release; distribution unlimited.

TSUPPLEMEN'I ARY NOTES 12. SPONSORING MILITARY ACTIVITY

U.S. Army Research Office
Box CM, Duke Station

Durham, North Carolina 27706

13 ABSTRACT

A theoretical study of the gas dvnamic interaction between a hyper-
sonic plume and the opposed hyperscnic external stream is presented.
Steady, axisymmetric, inviscid, perfect gas flow is postulated for both
the bow and far field regions. Limiting forms of solutions are obtained
for the bow region by application of the Nswton-B semann approximation

(i.e., eertio—0 Mooe'Mooio“oo such that Mooeee,Mooioeio~0(1)) to both

the exhaust plume and amkient air flow. Through asymptotic expansions
and their matching, it is found that six regions are required to ade-
quately describe the bow region. For the far field region, the hyper-
sonic small-disturbance form of the Newton-Busemann approximation (i.e.,

ee*o: Ma>e~0,5e~0 such that M%Debgee~0(1)) is applied. From asymptotic

expansions and their matching, it is found that "entropy wake" solutions
are required to adequately describe the exhaust flow and the air flow
near the contact surface. Analytical solutions are obtained which

(i) define scaling parameters for the bow and far field flow; (ii)esti-
mate the accuracy of the Newtonian impact theory in predicting bow
region geometry and properties; (iii) establish the variation of bow and
far field properties with variation in the primary system design

parameters. Reproduzed by

NATIONAL TECHNICAL
INFORMATION SERVICE

U 'S Deportment of Commerce

Springfield VA 22151

DD |r:::‘ni4r73 "4/ Unclassified

Security Classification

:
3
4
4
b




Unclassified
Security Ciassification

LINK A LINK B LINK ¢
KEY WORDS
ROLE wTY ROLE wT nNOLE wT
Flume interaction
Hypersonic
Retro configuration
th Unclassified

Security Classification

BRI o L nam o




T T —

THE INTERACTION OF A HYPERSONIC PLUME

WITH AN EXTERNAL HYPERSONIC STREAM
by

John T. Kelly

This research was sponsored by the Adv:nced Research
Projects Agency of the Department of Defense and was
monitored by the U.S. Army Research Office, burham,
North Carolina under Contract No. DAHC04-69-C-0077.

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Polytechnic Institute of Brooklyn
Department
of
Aerospace Engineering and Applied Mechanics

July 1973

PIBAL Report No. 73-12

Approved for public release; distribution unlimited.




| R

THE INTERACTION OF A HYPERSONIC PLUME

WITH AN EXTERNAL HYPERSONIC STREAMf

by

John T. Kelly*

Polytechnic Institute of Brooklyn
Preston R. Bassett Research Laboratory
Farmingdale, New York

ABSTRACT

A theoretical study of the gas dynamic interaction between a

hypersonic plume and the cpposed hypersonic external stream is

presented. Steady, axisymmetric, inviscid, perfect gas flow is

postulated for both the bow and far field regions. Limiting

forms of solutions are obtained for the bow region by application

f th ewton- emann roximati 1l.e. , -
o e Newton-Busema approxi ion (i.e., €a’ €50 0 Mooe’Mooio_(D
such that M2 e ,M2 €:5~0(1)) to both the exhaust plume and j
e € [0 TP 10

ambient air flow. Through asymptotic expansions and their matching,
it is found that six regions are required to adequately describe

the bow region. For the far field region, the hypersonic small-

disturbance form of the Newton-Busemann approximation (i.e., eeqo,

2 2 . . ,
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expansions and their matching, it is fouad that "entropy wake"
solu.ions are required tc adequate.y describe the exhaust flow and
the air flow near the contict surface. Analytical solutions are
obtained which (i) define scaling parameters for the bow and far
fie'd flow; (ii) estimate the accuracy of the Newtonian impact
theory in predicting bow region geometry and properties; (iii) estab-

lish the variation of bow and far field vroperties with variation

in the primary system design parameters.
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INTRODUCTION

A theoretical study of the interaction of a highly underex-
panded jet issuing into a high Mach number free stream that
is opposed to thé jet's expansion along its axis is present-
ed. At some distance, characterized by the length RRasie

the jet and free stream gases interact. The jet flow is there-
by deflected downstream by the external flow. The particular
case of interest to be examined in this study concerns flows

where the typical dimension of the body D is much 1less

f than Reie (see schematic (1)).

i
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Schematic (1)
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For this case, analytical models of the upstream and downstream
gas dynamic interaction pfocesses are formulated herein. The
following approximations are postulated:’

1. Steady Flow

2., Axisymmetric Flow

3. Continuum

L. Inviscid

5. Thermally and Calorically Perfect Gas
In further studies, assumption L can be partially relaxed by
applying boundary layer concepts along the shear surfaces for
high Reynolds' number flows. Also, assumption 5 can be re-
laxed quite easily by applying Mollier charts or similar models

for equilibrium gas dynamic properties.

A general schematic of the flow structure under these assump-
tions is given in figure 1, where three distinct flow regions
- are discerned. The major characteristics of these regions
are as follows:

Bow Region ) \

This region is characterized by nearly normal interior and
exterior shocks and relatively thin layers. The flow within
the layers is then necessarily subsonic and of high density.

Corner Region

The layers thicken markedly and turn in a downstream direc-
tion. Both interior and exterior layers undergo transonic
expansions about the relatively motionless core region sur-

rounding the plume. The development of the plume ahead of
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the internal shock resembles very closely that of a plume ex-

panding inte a quiescent ambient,

Far Field Region

The exterior shock and interface are at relatively small angles
with the freestream. The flow in all layers is supersonic and

n:arly parallel to the axis.

Flow systems of these types are of considerable interest for the
practical applications of force vector control and attendant
surface thermal protection of re-entry vehicles. For force vec-
tor control, the altered pressure distribution on the body, as
well as the jet thrust, has to be considered in calculating the
total force on the body. For thermal protection, although the
hot external gases are blowi “ree from the nose by the jet, it
is still necessary to consider the heat flux due to the poss-

iLle reattachment of this separated gas flow on the body.

In addition to the effects already mentioned, which are mani-
fested near the body, we must also be concerned with the flow
field far downstream of the body. In this wake-like region,
the mixing of the jet gases may affect the chemical processes
occurring in the wake to such an extent that observable prop-
erties and hence detection or communicatipn may be greatly fa-
cilitated or decreased. It is apparent that if such a sys-
tem were to be properly utilized, a detailed understanding of

the physical and chemical processes occurring within the dis-

turbed flow field must be obtained.
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‘ Previous theoretical and experimentzal studies have added con-
siderably to our basic knowledge in this area. The first stud-

; ies 1,2,3 were essentially experimental in nature, applying only
| cimplified modeling to correlate the data. A significant result

2,3 was that two modes of inter-

of these early investigations
action were observed to exist. The modes were derendent upon
the jet exit Mach number Mj , free stream Mach number Mwe ,
ratio of jet stagnation pressure to free stream dynamic pres-
sure T , body size D , and shape. One mode is characterized
by large interaction distances with unsteady shocks and bound-

ing surfaces. This flow regime is designated as the unstable

case.

The second mode of interaction is characterized by a relatively
short interaction length and steady strong shocks. This flow
regime is the case investigated herein. The mechanism for
transition from the steady to unsteady flow was postulated by

3

Finley “ to be a result of the development, for low T and

Moe or high Mj , of a multiple cell structure for the un-
disturbed piume before the interaction region is reached. 1In
view of the subsonic flow existing behind the Mach disc sepa-
rating the cells, we have the possibility of upstream influ-
ence from the surrounding gases affecting the interaction re-

gion in a possibly unsteady manner.

—— R N o e 2 e ae———_— . - - e
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The boundary between stable and unstable flow,1’2’3for experi-
ments where the effect of body si:_ on the flow is negligible

is given by:

Meoe P4j T
Tads 1.0 2
Tl L.0 8
7.1 L .85 15
7.1 5.30 20
2.71 3.10 L
b 3.90 8

Thus, to achieve stable flow, the jet stagnation pressure must
be much larger than the free stream dynamic pressure (i.e.,qj’
>» 1 ) for moderate values of qu + These are the same con-
ditions under which Rsto becomes much larger than D (for D

approximately equal to jet exit diameter); therefore, the case

studied herein will always be of the stable type.

It should be noted that one investigator 2 observed a region
for large values of TV where the flow became unstable and
continued to be so for all higher values of TT , Tﬁis result
has not been duplicated by other investigators, and indica-
tions of stable interactions by547 have been ottained from other
experiments at conditions that fall within the region of un-

stable flow found in Reference 2.

In addition, it has been observed 1,34 that the interaction
length Fisc,.for the stable condition is a function of 11'>}U

,a.,rﬂm‘,Pu,ﬁ_‘and that the contact surface separating the
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external strecam from the jet gases is almost spherical in nat-
ure. These observations have been utilized in constructing
simplified models to describe the flow field associated with

stable interactions.

Theoretical analyses of this jet interaction problem have ap-
peared only recently. In 1969, Laurmann 6,utilizing the
Newtonian impact theory, calculated quantitative results for
the upstream region. This paper presented general features of
the upstream bow interaction, but did not correctly treat such
areas as the corner region and the far field development of
the flow. 1In 1971, a time-dependent numerical technique 7 was
employed by Rudman and Vaglio-Laurin to calculate detailed
quantitative dynamic properties of the upstream flow interac-
tion. In the calculations, the jet plume boundary layer in-
tersection with the shock layers was assumed to be a point in-
teracﬂion and the core pressure was assumed to be that of the
freestream. The downstream flow was not considered in the

above report and only the bow region was evaluated.

The present study was vndertaken for the primary task of cor-
recting the errors inherent in a Newtonian impact analysis, to
estimate the effect of the corner region on the total flow

{ield, and to calculate the far field interaction.

An analytic approach was considered since such a method pro-

vides for the greatest insight into the physical processes and




also defines the accuracy associated with v rious approxima-

tions. Finally, this study also acts as a model for extend-
ing calculations.to more complicated configurations; e.g.,
where the btody influences the flow or where the jet is at an

angle of incidence to the free stream.

We must now determine the operating conditions under which our
simplifying assumptions are satisfied. For a missile or ve-
hicle re-entering the earth's atmosphere, we have the follow-
ing range of conditions from approximately 400,000 ft. alti-
tude down to approximately 50,000 ft. altitude.

Range of Typical Operating Conditions for a Re-Entry Vehicle

WUeoe (ft/sec) 15,000 23,000
Pee (1bf/rt2) 6.92x10 23,27

Over this range of operating conditions, we generally find
that rarefaction, viscous, chemical or physical effects may be
significant. This would violate our assumptions and therefore
we must examine the relevant parameters and their numerical
values in order to ascertain when our assumptions are fully

satisfied.

The first limitation on the parameters involves the assump-
tion of steady flow and requires that T¥s>1,Meed> 2, Hj‘-‘ o@)
The reasons for this have been discussed previously. A second

limitation relates to rarefaction effects occurring within the




flowfieli. For the upstream region, we have three areas where

rarefaction effects may invalidate the application of the ana-
lysis. The first area is the plume core itself where the large
degree of expansion may take the free plume flow into the tran-
sitionai regime. From an analycis of a steady spherical source
flcw expanding into a vacuum Hamel and Willis 8 derived an ex-—
pression for the distance beyond which the source gas becomes
collisionless. This is given by
“’(Faer!)aﬂ M
where Ty is the jet nozzle throat radius and Re* is the Rey-
nolds' number evaluated at the nozzle throat. This value i5
only a function of the nozzle throat conditions and hence is
a constant for a particular set of chamber conditions. This
can also be simply related to the thrust of our jet
__'I_'____%-a ¥a
R ( %mIsp (—_!S.:l
where Is? is the specific 1mpulse,_r is the thrust\and F%; is
the jet chamber pressure. In order that the plume flow for
our problem b¢ a continuum, the interaction distance, FEs¢° :

for the interior shock must be much less than the distance th-

The interaction distance Rs:c is determined by the condi-

tion of equal stagnation pressures along the axis. Therefore,

Reco = 1 (_patls &) ([ (ws"ug smg dg

PQQ. umg_ 2

-2




This expression is a result of assuming a source like behavior
for the undisturbed plume properties. The occurence of the
various quantities in the above expression will be detailed
in a later section relating to undisturbed plume properties.

The condition for continuum flow for the plume expansion is

then

:(R&MYW _g!. 2 1
Sie

Sio
In terms of the thrust of the Jjet, the above becomes

Y2 0 Ya
co mpd T b
F{t -(\ uax-uJ{ T8 <ﬁ) (SJA'IADJ“*SU:?%‘PWJQ

Following Reference (9) we take the numerical value of %‘f— > 10
11
to be safely within the continuunm region., This bound is in-

dicated in Figure 2 for the representative conditions of
Mee = 10, R =50 dim. , tiwe = 2x107° (b sec /Ft2, Ly =30005ps
¥i =125 , Tsp = 300 sec
We now direct our attention to the internal and external shock
layers where rarefaction effects can result in the thickening
of the shocks and shear layers to such an extent that they
strongly influence the development of the layers. In a paper

nio

by Bus 1t was illustrated that the thickening of the shocks

and growth of the viscous shear layers are related for the

shock layers; and, thereiore, we need only determine the thick-

ness of the shock with respect to the layer thickness to de-



-

termine where inviscid continuum theory is valid. It has been

11

shown that a continuum inviscid description of the flow is

appropriate when-
' >
B1e/5,, » baif5,, =15

where in the above § denotes thickness, and f denotes layer,
¢ shock and e, e y external and internal layers respect-
ively. From Adams and Probstein L2 we have for the thickness

of the shock for either external or internal flow

Ss = Va,/ Cx

Where Cw and Vi respectively are the speed of sound and vis-

cosity evaluated at M= 1 ,

After introducing the interaction length Rs.’o as a signifi-

cant length, this then reduces to 13
2
T%ﬁ. = P4aajVT2, = ./ e Reo

Sio
Where w is  the exponent for temperature in the power law
viscosity model, Rg is the Reynolds' number and Me is the
Mach number, based on free stream properties. 'Je now intro-
duce the first order thicknesses of the shock layers, which

will be derived in detail in a later section.

8se =~ €e _SA.:._ ~ e;l’z

RS(‘,o RSio .

P




tlhere €e,€;, are th: density ratios across the normal part of

the shocks along the axis of symmetry.

Therefore,

", N £ .
%!;.g. :%étme %i_f_ :%éu Reo.
where Re is bascd on the interaction distance Rsio - Jsing
the source model for the plume properties and the equality of
stagnation pressures to determine F{ag, we can reduce the
above ratios to functions of Jjet thrust,-T_ y Jjet throat prop-
erties and external flow gas properties. The results of this

are: V2

y
32¢ = E£c ¥ Muwe (Tpwe)  Uni =N
-SA;: Aoo U Tep V2 (g €, Vit ( I:'Tcos"&cmydy) 72

o0 = 6?’4 ¥y Mee (TPQJ’/zfo%“’s”%’ﬁ? 4? = L.
Dse A U2 [T T, V2

Using values stated previously which are representative of

typical flight conditions, the above can be plotted as a funec-
tion of altitude for a given thrust, abuve which rarefaction-
effects have to be accounted for. This has been carried out
in Figure 2 and it can be seen that for jets of 10 to 10°
pound force thrust, there is a large region of flow where tle

continuum inviscid analysis will apply.

We must now examine the region where perfect gas behavior or
equiiibrium gas behavior will apply. For the external shock

layer, there .are many analyses and data available which indi-

cate when nonequilibrium effects in such general flow fields

_—
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become important. For the plume and internal flow, this is not
the case. The reason for this is that rocket exhaust chemi-
cal composition, ecspecially those of the'solid propellant va-
riety, varies greatly from application to application and in
each caée the bounds of equilibrium are different. Therefore,
we cannot define a single general condition when nonequili-
brium flow occurs. Therefore, we will set dovm ©the bound for
the external flow as the limit for the combined layers above
which the flow cannot be considered to be in equilibrium,

The external layer nonequilibrium bound is adapted from a

paper by Chengu+

and is based on the relaxation processes be-
hind a normal shock. 'hen the -istance for relaxation to equi-
librium conditions behind the shock becomes of the same order
of magnitude as the layer thickness, then nonequilibrium ef-
fects must be taken into account. Cheng's resulté gave a sin-
gle point at high altitude, which when combined with binary
scaling led to the result in Figure 2, above which nonequili- -
brium effects rust be considered. Binary scaling derives from
the fact that at high altitude the probability for chemical
reactions to occur by three-body collisions is much less than
that for two-body reactiors. Under these conditions, it can

be shown that if density and field dimension are held constant,

then the degree of nonequilibrium will be the same in each

case.,




Since the body dimensicn Ekhis related to jet thrust and den-

sity P“e is related to altitude, we can then establish a

relationship between thrust and altitudé, which will maintain
: the product of density and dimension constant, giving the
same degree of nonequilibrium. Tha binary scaling principle
only applies to high altitude, for moderate to low altitude

collisions should be prevalent enough that equilibrium flow

is maintained.

Referring t¢ Figure 2, it is shown that for typical re-entry
conditions the extent of the equilibrium, inviscid, continuun
flow is about one half of the complete continuum, inviscid
region; however, there is still a considerable region where

all the assumptions stated previously are fully satisfied.

Now that we have determined our bounds of validity for an ana-

lysis based on several assumptions, we can proceed to outline

the analysis in detail.




JET EXHAUST MODEL

The undisturbed plume which interacts with the external flow
to form the bow layer develops in an environment (the core

region) where there is little fluid motion and hence nearly

constant pressure. Under these circumstances, the undisturbed

plume is analogous to the case of a jet exhausting into a
quiescent ambient which is at the core pressure. e can then
employ analyses developed for plumes exhausting into quies-
cent ambients to our retro plume case. To be consistent with
the analyses for the downstream and bow region, we will uti-
lize an analytical approach for the undisturbed plume. There
are mary models available for describing the isentropic ex~

parslou of a jet far away from the nozzle exit. 'Many of them

have the form 15, 16, 17*
n
o os C 1
P 9_.:;’5,{9 (1)

Other properties can be determined from this expresgion by use

of the isentropic flow relations (No's. 30.2-30.3 from the Bow
Analysis).

*¥In this reference, an expression for Mach number is given
which when substituted into the isentropic relationships for
high Mach number gives a result identical to (1)




Ia (1) @ is the anpgle measured 2way from the axis of sym-

metry, R is radius measured from the nozzle exit and n
and C are constants for a given nozzle and jet gas compo-
sition. Various forms have been proposed for N and C as
functions of plume sr=cific heat ratio &) , exit liach num-
VET Mj y and nozzle exit angle On . Using the form € =
T/RB6e,vhere G is the sum of the Prandtl-leyer limiting
turning angle into a vacuum and en,gives the correct theo-
retical result of zero density cr infinite HMach number when

I

Q= B« . For this value of & y We can extract from a

15

Prandtl-l}eyer analysis near the nozzle lip the value forn.

N % . (2)
¥j=- 1

This result can also be obtained from application of the small
disturbance theory to hypersonic Jjets expanding into a vacuugia.
As will be shown in the bow layer analysis section, these va-
lues for N and C give the physically realistic result in the
limit as €, = O that the density and other flow vari-
ables remain of the same order as we go away from the axis.
For any other choice of C and N as a function of Xj the
density would be finite on the axis and either zero or infi-
nite away from the axis. Even though the form o7 N as a
function of Xj is correct, its numerical value for a given X

is still not clear. This is because comparisons with numerical

results give different values for N y varying between the value
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given in (2) and one half that value 19, The difficulty is

that the form of equation (1) is not general enough to be
valid over a full range of R and @ . This point is illus-

trated in an article by Boynton L5

where he shows for ?‘-q
the proi)ortionality constant is approximately one and for
9> 4  the numerical results lie closer to the curve for a
proportionality factor of two. Since the bow shock layer and
downstream layer depend critically on the undisturbed plume
flow, (a§ will be shown in the bow and downstream analyses
sections) then it was felt that a review of numerically cal-
culated undisturbed plumes to give "best" values for N was
justified. The expected value would probably lie somewhere

between the theoretical value —=—rv and —_ 3

¥; -1 ¥ -1

Three sources of numerical plume calculation data were chosen
for examinatiorn to determine "best" values for N . In re-
ference (20) numerical calculation of three plumes from super-
sonic nozzles expanding into a quiescent ambient were presented.
Two of the nozzles (X) = 1.15,1.\8) are representative of
those used for launch vehicles, and the third (81 *1»24) is
representative of spacecraft nozzles. The method of charac-
teristics was used in this study to determine, for constant
XJ y Mach number contours, and density and temperature dis-
tributions along and perpendicular to the axis of symmetry.

The second reference 16

contained the calculation of the plume
resulting from the expansion of air through a sonic orifice.

Mach number distributions perpendicular to the axis of sym~
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metry were given. The third source used 15 contains results
of a numerical calculation, using a finite difference tech-
nique, of the flow from a nozzle representative of a launch
vehicle. TCensity is given as a function of angle from the
axis in this work. To determine Nfrom the above sources for
points away from the axis, we simply use the isentropic re-

lationships and the assumed distribution (1) to determine

for a known value of the constant g and f) at a given ?

and R . However, near the axis this procedure doec not
yield good results since large changes in h produce 1little
measured change in.JD or M in this region. In this case,
we then apply a darivative of the density distribution to ob-
tain a better relationship fér determining N . For the first
and second references where properties are given as functions

of I , the distance perpendicular to the axis, the expres-—

sion

establishes n from the density gradient perpendicular to the

axis. For the third reference, we use

n = - &T%m)_&_ Bg%/?gml-o'z




Values of 7] , the ratio of N calculated from 3 and 4, to

2/(8j°1) are plotted in figure (3) as a'function of §/Beand
X/rJ' . From this graph, it is evident that n is not a con-
stant but varies both as a function of §/@e and X/ry . If

use is to be made of (1) in calculating retro plumes, then '
for each change in X/FJ' a new value of M must be determined

from figure (3).

The variation of M with@/Bgis not as critical as the axial
variation since the bulk of the mass flow, which determines
the plume external stream interaction, lies near the axis and
therefore the behavior for P/Be” +> is not significant to the
interaction. Also, for 9/6«; near zero the density is near
one for any value of h . Noting this, we then take the value
of N found at P/Be=.25 to be the "best" value for a given
X/rj‘ . Characteristic retro plume calculations have been
carried out with values of N determined from figure (3). Re-
sults of these calculations will be discussed in the sections

on bow and downstream analyses.
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ANALYSIS OF BOW REGION

For the problem studied here Mee » Moo;o >>1 and ,80,,8.‘ =0

The flow within the internal and external shock layers are

determined by a perturbation theory for strong shock waves

and small layer thicknesses. The procedure involves a limit*

of the governing equations and boundary conditions when

€e,E, > O M.,,,Moo;o»oo 5l Mc}.ée,mmaecozoﬁ-)where
€e, €l are the density ratios across the shocks at the

axis. To elucidate some detail of the flows within the la-

yers, the coordinates normal to the shocks are expanded in
powers of ée"", €io  where X,m are to be determined.
The orders of magnitude of the various flow quantities in terms
of €e, €{e¢ and M;ee-e ,.Mcoz:;.éi.o are derived from the
requirement that the shock relations and flow equations yield
a nontrivial system which includes all the physical effects

of interest as €e,€(, > O . The coordinate systems are

shock oriented and are illustrated in schematic (2)

e Jet
Schematic (2)

*This limit will be denoted the N-B limit after Newton-Busemann




Upon application of the N-B 1limit mentioned above, it is found
that the flow field divides into several regions within which
unique asymptotic expansions for the dependent variables must
be determined. ‘It will be shown in the'following analysis

that four regions characterized by two major effects are re =
quired'to describe adequately the external flow and two re -
gions characterized by two major effects are needed for the in-
ternal flow. In both the internal and external layers, a re-
gion characterized by constant density to first order is formed
near the axis of symmetry. Away from the axis, the density

and other properties vary both along and across the layers.

For the external layer, a region characterized by non-constant
stream velocity is formed near the contact surface in both the
near and away from axis regions. This contrasts with the char-
acter of the region near the shock where the velocity is con-

stant to first order.

The regions are numbered one through six in schematic (2)*.
Once the flow properties are established in each of: these re-
gions, then matching between the expanded properties will be
demonstrated to show their consistency and where necessary,
composite expansions will be formulated. The final step in the
solution to the bow region problem will consist of the numeri-
cal matching of contact surface pressure and position (i.e.,

flow deflection) between the external and internal shock layer

flows.

* These regions, of course, are not drawn to scale.
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To achieve this result; (i) initial radii of curvatures and
positions of internal and externzl cthocks will be found from
a scheme which uses solutions obtained for regions 1,3, and

5 (this scheme will be outlined in appendix (A)); (ii) shocks
will be extended away from the axis utilizing these radii of
curvature; (iii) external and internal contact surface pres-
sure and position will then be calculated, using solutions
from regions 2, 4 and 6. The prés;ures and positions are then
compared to determine if numerical matching is achieved; (iv)
if equality to a certain tolerance is not found, then the ra-
dii of curvatures are iterated until matching is achieved.
Having accomplished matching, the procedure starting from

step (ii) will be repeated psing the newly found radii of cur-

vatures as the initial values.

A brief outline of the regious considered and their major

characteristics is now given.

For region two, which is of O(€e) in thickness and O(1) in
length, the N-B limit gives the familiar hypersonic blunt body
result, which has been investigated in whole or in part by

many authors 105 =1 22.

The orders of magnitude of the flow
quantities in this region are the same as those directly be-
hind the shock. A major characteristic of the solution found
is that the velocity along streamlines is constant in the
first order gpproximation. This result, adequate for points

10

near the shock, has been shown to be incorrect near the
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contact surface in region L; and, therefore, a new expansion

must be sought. In reference (10) the initial orders of mag~
nitude of the flpw wvariables in region 4 were established as
well us the thickness of this region, which is C)Céi&). To
first order when the N-B limit is applied, the constant stream—
line velocity result of the region 2 analysis must be replaced
by an expression for velocity which accounts for pressure gra-
dients along streamlines which are found to be the same for all
streamlines in this layer. After determining expressions for

the [iow variables in :"egion 4 matching with region 2 is then

demonstrated and a composite expansion is then formed which

is valid throughout regions 2 and L. For general shock shapes
these expressions must be numerically integrated'to yield va-
lues for the flow variables of interest. Having established
results for distances of O(1) awvay from the axis, we now wish
to determine expansions valid near the axis in the N-B limit
for use in the initial radii of curvatures of the shocks

scheme.

In this study, unlike in past investigations,lo’ 21, 22 atten~
tion is focused on this near axis region because we are seek-
ing accurate and simple analytic expressions for the layer
thickness and contact surfice pressure distribution as func-
tions of shock radius of curvature to be used in the initial-

izing scheme. It will be shown that the near axis region 1

T
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will be ofOfeJ)in thickness and O(&Yin length. This region is
characterized by constant density to first order. As in the
region away from the axis, the first order velocity along
streamlines is constant. Consequently, as in the away from
axis case in region 3 near the contact surface we must mod-
ify the expansions to include the effect of non-constancy of
velocity along streamlines. The dimensions of this region
are 0(6-&) in thickness and 0(6?) in length. The variables
found in this region are demonstrated to match with those of
region 1. A composite expansion for region 1 and region 3
is then formulated. Finally, matching between 1, 3 and 2, 4
is demonstrated for the specific case of a spherical exter-

nal shock.

For the internal layer analysis, more details will generally
be included than for the external flow since this work ap-
pears here for the first time. For region 6, which iscxl)in
length, the N~B limit leads to the results that the‘layer thick-
ness and streamline velocity to first order, for non-trivial
results, nust be of 0(6{.:/’) . Also, the internal shock is
spherical in form and the first order pressure and density are
constant across the layer with an error ()(egﬂk) These re-
sults will lead to interesting conclusions, whigh will be dig=-
cussed at the end of the analysis. The solution found in 6
unlike the external flow case is valid throughout the shock

layer for distances of Cﬂl) « For general shock shapes, these

23




equations must be numerically integrated away from the axis.
As in the external flow case, a region of <3(€f}h) in thick-
ness and of O(€i?) in lensth is required near the axis to
be used in the initializing scheme. As for the external la-
yer, the near axis region 5 is found to have constant density
to first order. A solution technique is then applied which
makes use of this characteristic to determine analytic expres-
sions for internal layer thickness and contact surface pres-
sure distribution near the axis to be used in the initializ-
ing scheme. Having found solutions for the variables in re-
gion 5, we then match these to the variables obtained in re-

gion 6 for the specific case of a spherical shock.

The detailed analyses for each of the six regions will now be

given.
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External Layer - Region 2 Analysis

Following previous invest:igat;:I.ons,21 we obtain the orders of
magnitude of the variables inside the layer from the values

obtained from the shock relations. These relations are:

Peoe =f¢oe u":; (1 - g) 3'"za- (1.1)
= Um; C.O.S&\" (1.2)

2 Uewe @sun? (1.3)
(1.4)

P - lyg = 1/( %ﬁ.-‘*—"—x +Q—Lk¢+1)ﬂnts'"‘a )

Non dimensionalizing the pressure byf,,.u.::, velocity by

Uwe and density by fewe » We obtain from (1.1-1.4)

YVaM& + (a- O sm*E
cos &

€ sn&
1/ &
the NB limit, we find from (2.1-2.4)

2#\
sin O

P~
oS o
€esING

1/€e




Using the orders of magnitude establishsd by (3.1-3.4), we

can now write the following expansions:

= Wo + €Ee Uq4 + -

u (4.1)
V = €eVo + €2V, + ---. (4.2)
P - Fo + ee P:‘ -+ . . (LF-B)

P = Po/€e Prt (Lo4)

In order that the flow variables described previously lead
to a meaningful description of the flow, we must stretch the

normal coordinate y. From the continuity equation we find

for y
a- = _m = .E.E'ﬁg:“gg\rr - ™~ reée
fuZ‘ﬂ'l" 2z ﬁéii..unc?fn'
<

Since P‘zO{Rs(,) which is set as the unit length scale, then
y '.':-..0(€¢). Therefore, to obtain non-trivial results, we must
stretch y byO(€e). The expansions of the variables and the

stretched coordinate y should now be applied to the govern-

ing equations

? gur + ng;H = 0 H=i-ky (51

= A= -
u%s;t( * HV%% Kuv + 5 %ﬁ =0 :5.2:
Uy + Hvdvy — Kku? 4+ H PN 5.3
9 % f% (5.4)

wWOPR¥ 4 vHIPEY - o
X Ba,
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Before substituting in the expansions of the variables, it
will be advantageous for final integration of the equations

to change the above system to one empIoiing the stream func-
tion as an independent variable.

Define’

T P o S —

X = Hrpv ::3
| = —Y‘f\A *
; 5

The above system under the transformation

2 = 33¥Y2  +
% 2% Y %7(

2. WD

oY y Y

then becomes

Hrap = By + ku (7.1)
(U2 +v2V2 + h = U2+ uE)R + har (7.2)
(7.3)
¥ = Pa/pg
{;/f HP S (7.4)
B = Mg

The distance across the layer in terms of ¥ is obtained from

'_a% r'Jou. | . (7.5)




-

In this system we then must add

F=ro 4+ €elMa + - ' (8.1)

H=1- Ko&oee+ el R (8.2)

Expanded boundary conditions at the shock are:
'

|
- -] ~

? = €e/Moe€e + (l - €e(1+ Coﬁt_;__tg. )SM"'O' (9.1)
G = cs& (9.2)
vV = 1+ ct*E) s (9.3)
. » mt) . (9.4)
A P .
f = 1/(€e(1+ c:".'ge)> !

This then gives the result for first and second order boun-

dary conditions:

F" = gIn& 2 (10.1)
Qo = Cos & (10.2)
Q: = @- + €°t'6/r1q§eg) sIn*e (10.3)
ﬁ., = 1/ (1 + ot Medee) (10.4)
F* = /Moe e ~- (1-+<°t'§/ﬁu§'eu)sm‘€' (10.5)
Uy =0 (10.6)

(10.7)
%t e (10.8)

Substituting (4.1-4.4) into (5.1=5.4) and then collecting

terms of like order in €e we obtain
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First Order Problem

x ' (11.1)

= Po X f Uow d"y
e o Jy (11.2)
Po = PoPox / Pox (185 5)

Ue = Uo*
= Woe (11.4)
° _ f (11.5)
fguoro

Second Order Problem

P o

P = '[;1. ‘j[&r‘# +‘rl:%\5/: + &rga.(k.ggrwgocosa‘)]d‘f’ (12.1)
¥ ° -] -y

(12.2)
f1 = PPi/pon +Prpo = PaasPou) fouPo/Poxe

= = -&-"— In P°/P°"' (12.4)
v1 : uoﬁgz._ t KelYeVo + Ve(Us/ue) (12.5)

Pt = g (Polpe + W+ rm)

Equations (11.1)to (12.5) describe all the properties of in- 2 1

\
terest near the shock, with an error 0(50 )

External Layer - Region 4 Analysis

Bush Lo hag determined from these results that e'quations

(11.1) to (12.5) are not valid at the contact surface due to
the change in order of magnitude of streamline velocity and |
hence another expansion is required. Following his results,

we derive the system of equations valid in the contact sur-

face region with an error O(ecya).




The expansions for the variables in this region are:

W= € U + €eUst -+ . e
V = €8 Vo + €52 U + -+ (13.2)
P = F; + € Pyt T (13.3)
f = ‘F;/Cg + ?\; + .- (13.4)
! F = o+ €¥ry + - (13.5)
H= 1 + Ko+ -+ (£3.6)
x = X (13.7)
y = eé’zg (13.8)

These will be substituted into the governing equations (5.1)

to (5.4). The resulting systems of equations are:

First order system of equations 4

W =0 (14.1)
' - + Vo % + }S.' ‘5%' (1h.2)

P "é'gfo + Q?g__.g';vp_ = 0 (14.4)




We can extract from (12:.1) to (15.4)

First order results

Po = SNEY | (16.1)
R 1 A = Uow - 2%;‘/_16;. \nﬁo/ﬁ* (16.2)

Ll d

o = Po Fon/ Pox (16.3)
Second order results*

~o

Br = Palx) _ (17.1)
20Uy = 2Woe Uaw — ?E‘%?(%& T (17.2)
) G Tyl - P

. 0%

P= %-.-(‘%_— ‘%‘-)ﬁ.‘ﬁ./'m

(17.3)

These body layer results must be matched to the external la- ’

yer region 2 results in an intermediate region where both ex-

pansions are valid.

¥ Vs 1s not considered since it does not affect the calcu-
lation of ,;3 to error greater than de.“)and is itself very
small of OCed).
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We now demonstrate matching for the variables P»f and WU,
Matching occurs within the intermediate region defined by 72 i

In this region

'||m§—)0 ‘!Mg—’o"
@]

ee-. é.'.

~ ~
In terms of the variables ?;% and (,}3: ?,“wit.h@, @ of Ot )we have

from the expression for layer thickness, (7.5),
—~ V2
gx =0} P = Ole&™)

The order of 7( must then fall in the range

ole< N < o

3

Following Cole? » matching will be achieved if for each power

of €e we have

Lim (?"5) > O

€e>»0O

where )C is the variable of interest to be matched. Taking

the matching of the pressure first

i (BCF) - pL§,9x=0)) >0

6e"’o




Therefore, the pressure“in the body layer is equal to the
pressure at the inner boundary of the external layer. A com-
posite expansion valid in both regions-can be determined by
subtracting the common term to both expansions which is the
pressure at the contact surface. The correct pressure dis-
tribution will then be that derived from the external flow.

For matching of the density, we must have
O oy

lm (FF.5a=021) - (3, P~ NRuy)) 30

e; -» 0 €.V‘
From (16.3) and (17.3) we have

F':'E;_'% +(%+1+Ml.:e‘)§o

~

~ -~ ”n ~
Since P., and F; are just functions of 9 thenf(

3

@) ; there-~

fore

m (F@) - p§.0) 50

€¢>0

The density within the body layer is then equal to that at

the inner boundary of the external layer. As in the case of
the pressure distribution, the uniformly valid density distri-
bution is simply given by that derived for the external layer.
The velocity now has to be matched. Once again, as for F) and

JD y we must find

33




lim (G(?ﬁ,@*—»m) — L&('CID,C?;**O)) > O

€Ee>»0O

For the body layer, we have

Uox = Ou ﬁ:*"ﬁ*"l Uix = O

Fl*:~1+ i F_t*'-"o

Mee€e
Under the abcve conditions 'CI from (16.2) and (17.2) becomes
~ 2 ~ xR V2
a = éhgz'(.eaa' - ZLIY\{30<Lq>j) +
e CYEO(FD) -PB)(zz - 1) -
~ 2 ~ s '2. z
(8, - 2In Pu(P)) (e, = l) InF(B))
Moe €e

The near shock expression for the velocity is from (11.3) and

(12,.3)

WU

On ‘%%\”R/Pox

For matching in the intermediate region Il we transform the

independent variables such that

’é—* = e*n”* # oo Ge#o
€'

Ox = By 20 @4&"'%7{"")0 €e » O




-~

The matching condition then becomes

oy a 2L _va
lima ( Ee',h'(ehnn - ée:’zln Pe --( In Egl €e 4 -
€C>0 G‘VZ e*nn 2. *n3 ns

+ e (-—?&/ﬁ + Maeee -1 "'(l/l“loo'e'ee-l)lnﬁ;)
Yo _ (|n B 2 3/2,_'_”,)

(Gaall - lnPael

N Lt TR e ——

& CERY
CGgn + € npa(39) 30
Sun N
3/a.
The above can be seen to match to error O(Ee, ) A compo-
site expansion valid in both regions is then
(18.1)

4
w = (6*2‘ &5 2.€e.‘h Po(?’?)o)) *

€e ( P°"‘/f’o=«‘n P°/Pog - In Pb(§:°>)
(9;2 - RE€e | n Po(@);O))Vz

The layer thickness can now be calculated from

\ 4
3=(__a_\£_.
_43 P U r

Once the radius of curvature and position of the shock are

known, then all the layer properties may be calculated.
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Now that we have the results for the external flow away from
the axis, we will now determine if they apply in the region
near the axis. From the external flow, the velocity parallel

to the shock is given by

N U = Ox - 215#:\?1 Po (.@LCD)

P
As we approachthe axis both Q and (y;‘ y as well as e-x be-
come smaller than (DCL) . For this situation, the expansions

based on the above quantities being of order one are then no

longer valid and new expansions must be obtained. It is of
importance to develop an accurate solution in this near axis
region as the final matching of the external stream layer flow
and jet layer flow depend on knowing the initial locations

and radii of curvature of the shock surfaces near the axis of

symmetry.

External Layer - Region 1 Analysis
To establish these initial values for the external flow, it

is convenient to determine the shock layer thickness and con-

tact surface pressure distribution in an analytic form. This |
leads us to describe the external shock as an expansion in

A,
even powers of g) for the region near the axis. The expan-

sion is

R



It is sufficient to retain only the first two of the above

terms for accuracy consistent with the number of terms in the

dependent variable expansions. The expansions for the de-
’ pendent variables which give the relevant physical behavior

in the near axis case and are consistent with the shock re-~

lations are

; F

P + €epi +

Pfee + prl +

(
w = eev’- Wo! + egyz Uy + -+
\4
X

T € Vo + €l Vi o+
= €&*x’ y = &ezf

Inserting the above in equations (7.1) - (7.5), we obtain for

the first order results

%—E}‘, =0 (19.1)

P’/ fo, = Pox/ )Qoli( (19.2)

Ue' = u-Ol* (19.3)
Vo = Ud 9Ye (19.4)
¥ 3 (19.5)
. A
30' - f _ﬂ—r—'—
o .P°'u° re
For the second order, we obtain
1
‘ L [T / 1
Mo %Eq}, = Ko lUo + %\{‘?/ (20.1) i

(20.2)

Pl Blpm (B - Bar)S By
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2udui +V6® = 2uluia +vid - 2 (B - Bla) 0
vl Ox %

/ / ’ ’ .

The boundary conditions obtained from (1.1) - (1.4) are

P
Pix

fuu =

~, %
For R=1+ae®’ (19.1 to 19.5) and (20.1 to 20.4) give for

first order

P =

!

Uo

!

go

For second order, we have

P1

!

P14

((1-22e)*(3'*- /Y3 - (- Qi/p)))

= ‘fb*:‘= 1 li&;: = qx;(;'H2ﬂe> VG; =1

= (1 + 947 (1-20)% = Y maed)

= 9‘;(112:@\1 Ll:.'* = - @43@ -2«)’76

;
K
L
4
E
3
3

f’o' =1 , (21.1)
= (1-2ae) Pu (21.2)
= (gu/8')? (21.3)

SARATEY 7 S ;

ala ¥ a
= ~&le -1 ote Ce e
(1 + §*(1-200) / Moce € ) _— .1

Q““z'g')"'.ﬁ Q2 + (92 -9"N-20)* = () |
T a )7'@"_5_@;’2@.' 1 (1-6,)) "

(1 %)2% ( L___)_" -2 (- ?’3'2(1-2%)z
(1 -220(3' - P/ Vs — (1 '((9:/‘?9“)/2))(22.4)




External Layer - Region 3 Analysis

As in the case away from the axis, we must develop a body

layer solution near the contact surface. The relevant ex-

pansions for the variables in this region are

P"" +. €e P"" + -
/,

Po'ree + P+ -

P
Jo
u
\Y

= €e U 4
- eeg_ v° " +
X = €eX "

_ Va N
S ¢

Substituting the above in the equations (7.1) to (7.5), and

collecting terms of like power in €e, we obtain
order results

for first
} " = o
'an" (2301)
Po’/ _Po" = P°”’|‘ / fo'; (23.2)
For second order results
1
VL © (24.1)
"
W' * = Uy + 2(P1y - P1") (24.2)
f‘x" '—‘E°"E , L B‘;I‘_PM)PO” Ell (24.3)
Pc: PO Po-'n'g R,:
The boundary conditions which must be applied are

Pov = fow = 1 Uow = (1 - 2ac) Py




P:.';.g = 1/Mié€e -1

The final results which mustbe matched to the near axis outer

region.case are then

Po = Po 0X) ) (25.1)
f°“ = ﬁ,”(x) (25.2)
Pi-" % Pl"(x) (25.3)

(25.4)

‘FL" =f:_"(x)
Uo" = ((L-2aef*9k"+ 2(psy = pi) %

Following the same procedure as in the away from the axis

case, matching requires that

v ' _
Pc (X) = Po = 1 (26.1)
Pox) =P =1 : . (26.2)
Pll., = F;.(¢:o) .= (Ji +%-© 1(1'2.0.) - Mu.‘ee) (26.3)
P = £, ($,0) = —%@"(1-2«)” + '12'. (26.4)

The values obtained for (26.3) and (26.4) are simply those de-

rived from the near shock region expressions evaluated at the

[
contact surface. The value of u;; is then

_ Va2
W' = (@-2ad'g,~ + 2(-% ...%@"(1-24,)9(26.5)
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Matching to outer layer results, we require that

| ] "
2:"-’0(“ u)éo

ellm (e ”“(1—2«)9’?,,71 +_§:.____( 2(1-2q )4%577/6
@;__( @ {1-2a0 + (4~ -2ae)*(@'* - @"7]/? /35—
+(1- 95°nY§™") - € (@-2ad) Q_%ﬂ +
2(4907(1-200" 1)) + & (_1)** 50

2(1-2ae) EV2

Expanding the square root
e(l':o (Ee *(1~200) @y +'§;/”' (—2§1-24e2"%’,5275 -
o "9 %209+ Q-2 (9" 9"’? &5 -
5 (1= oY §") — € (@-zac)mn/ets +
"(‘4/ §'*(1-2ae)* - 1)1 - za...)%n
e (439"(1-200* - 12 ) 4 o2 ( ))
2.@. 2ae)

2%37{3

** From boundary conditions derived on the basis of mass flow ]
through body 1ayer :
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It is seen that matching is assured. A uniformly valid re-

sult for velocity in both regions is then
2 (.%(1-9&‘)'* -..2( (o} (1-2a¢)* + (1-220) (G-
9i/3)/5 -5 (1 - RYP) -4 (3 (120" 3 )Y/
2((1- 220 @, + zee(ﬂ-?(i -20¢) - 1)) (27.1)

Using the uniformly valid results, we calculate the layer

thickness from (22.2) (27.1) and (7.5), which gives

y!' = (1 . (CL+%€-)V" —(%e)/z) + e.(1 2.6

11 1 \&'* (28.1)
+ 62(1-203>(‘I4‘8" -+ 1'_2' + 3MQ. @

The contact surface pressure distribution is given by (21.1)

and (22.1)
! = 1 - €¢ -(1- 24 B'ee + €Ee 28,2
Pes = 1~ € (1-2aq4Pee ke @2

Expressions (28.1) and (28.2) are then used in a scheme, out-
lined in Appendix A, which determines the external shock ra-
dius of curvature and position along the axis of symmetry,

for given external flow and jet csnditiqns. These values are
then used as initial conditions for determining flow proper-

ties away from the axis.
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The solutions found for regions 1 and 3 as the variable

@' tends to infinity must match the solution found for re-
gions 2 and 4 as @ vanishes, If matching is achieved, then
we have proof that the expansions for the region near the

axis was the correct one,

For this analysis, a composite expansion for the near axis
and away from axis regions is not sought. Therefore a match-

ing of these regions for the special case of a spherical shock

will demonstrate the consistency of the expansions and will in- ]

volve a much smaller calculational effort than if the general

-

shock case were attempted. |

The away from axis results, equations (12.1), (12.2), (18.1),

o ”~ 1
for a spherical shock and small ? are

ut = prz = ?:/3 + Zee(@z%“q’:/3¢' %&z)

= 1 - € -‘.—L‘w'ﬁ-gi_ -1 0€ -e_,g’?‘
P _2‘- 5? ? lz—q = Mos €e

P -d9 v o - R (Egm Y
~2 4
(-1 91 -2 -F) + & +49% "125.%'?-
i%0q - € . 1
4 e Q 3 52!: ]
-39’3 i L%&" '*‘3-%@.-*%? —:599 +(1+ Mot €e |
- 9x) + Pu(1- _z,T&\)(l -_gg_&-%_@ +<y,@,«.+z))
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The near axis results for a spherical shock, Qe=0Q, from

equations (27.1), (21.1), (22.1) and (22.2) are given by
U= €e O + zel(-qa' -2 0t B -/ D!
. O (- gi" - 2(-§"+ 3=92/9)
- (2 -0i/5)"))
P:: 1 ~ €E/2 ""f/BGean + Ge?‘a/3§'+ ée/ﬁco'éég
- egcp.:‘f/@,%s
p=1+ €e P/ Mok € + ee(@i*-9) - € (

n_3 '8 e 32_ ( 1 - @*//@,)lf))

Following the same matching procedure as was outlined for re-
gions 1 and 3 and 2 and 4, we define a variable ?z which des-
cribes an intermediate region where both the away from axis
and near axis expansions are valid. For this case ,0(5? ﬂ<0(1)
and therefore for U matching

22 As _m?3 2.2
lim ((P*n" °-—%CP«4)[7|4 + € (Py N % %'%ﬂ)

€e»0

-egn - ef(-paart + 1) - 2
€e? n

€e
aoe AR 2 (B2 _ i fou M
o - Bt - (G - ) - 3 (- )

Matching is assured for u* .,
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For F we have

A2

&2, (1 -ern -4dpnys « Pen /3%y - nYee
- €. % Ny Mo €e + 4&%7@7,7‘/3 - € ?xnﬂ'/lz@,“
- € PANY3P, + &fetd — €Oy /2P, +
2eeQy N30 ~ € Qg 1/ 2P -1 + €efa +
AOn'NY3 — € PunNY/3Fee ~ €seeMl. ~
cPuy /28 )0

Therefore, matching of F to this order is "ssured
For f) we have

ei'.'::# 1 - 43 nYs + %nn‘/:s@;, ~ QN (/Mage - 1)
+ €L+ NP (1- tMdige - 1342) + /2 +
4@;.9;,,7)‘/3 = 7%‘;;71‘/5?7:72- = PunNY/38y - 9’:71/ ?@n"
tR P N/3Pn + €o/2 - €P/Pn -1 —
Punn/Maiee = (P ~B)n* + (P05 - B3 N5,
~€e/2(1 - %tz/@n"») =0

Therefore, matchingf to this order is assured.

45




Internal Layer - Region 6 Analysis
We start the analysis from the shock relations, which are:

ﬁ = ’[S,,; + ‘8."{5@; F’l:{ sinid (1 - €) (29.1)

f.= Pui/E (29.2)

0= Ue; cosE (29.3)

U = €Uuw; sng (29.4)

€ = ¥i-1 + SFT (29.5)
T o+l (wea1) Mo s mTE_ ,

Py
Unlike the external uniform stream case ﬁ.c. Hw.:) ﬁ.; are not
constants but functions of the undisturbed plume flow. Their
functional relationships are determined by the assumed source

distribution

j.),,c o _‘ﬁi: ]@w (30.1)
’\Sooi = Feowgf’oon/ °°'-°> V2 823
F']ooi, = ’lfc"- _c§°.§. .Egm) (1 + §.L__. Ma: 6;0) ;2—.-'; .

where n = b/(¥ - 1)

- = (EF -2)F - (w0 ) + e

We now expand the boundary conditions for e.'.-oO,M WP such that
k8
€ioMay, = O(1) . This will then indicate the orders

of magnitude of the variables within the layer near the shock.
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It is hoped that the orders of magnitude found for the vari-
ables will be valid through to the contact surface. If this
is not the case, then the solution based on the orders of mag-
nitude near the shock will break down and a second expansion
valid near the contact surface will be required. Expanding

the undisturbed plume parameters, we find that

& -( )éu ~ O(€w)
Oeo = {__5(1 tan J:f'—f;(”” -.l.)) Il'.+‘!:an Ma - 1~0(__,_)

When applied to (30.1),(30.2) and (30.3), we obtain

foi = pesic ‘c!fing‘; ~ B8 (31.1)

Pooi = Paie cgﬁ_ggw ~ o(1) (31.2)

ﬁ«n ‘f-‘; ‘325*'(“ Mme> 2 . ~Oft: )<31-3)

The first oruer expressions, (31.1), (31.2), and (3%.3), are
then introduced into the expanded form of the Rankine-Hugoniot
relations, (29.1), (29.2), (29.3), (29.4) and (29.5), which

then give the order of magnitude results

)’S ~ O(é—. $ooce F ~ O() pwis Ue,
8 ~ 0(8) Usy 0 ~ Ofeee) Uem

where © is the angle the free stream makes with the direction

normal to the shock.
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At the axis of symmetry, €co is the density ratio across the

1 . . ' Y¥o-1 e RSN
shock and is given by € .&_t.;—i- Moo . Up ¢to

this point, the magnitude of the velocity a parallel to
the shock has not been determined in terms of €vs ; however,
jts lower bound can be determined from the condition that the

shock layer is of zero thickness in the limit as €+ 0O and,

therefore, the flow must be turned 90 degrees upon crossing

the shock. The deflection angle is given by

- S ~

'Eans-'—(f‘ao' 2R -1 )co
PICE ao;‘—(ﬂoo'?s'"’g"l)

o~
where & =1L - © for near normal shock ©<<1 Mooy >> 1

tan§ = <050 tan_ = e 3 o°

(s,wx - c.os‘e) 3 +r -1 +06%*
=2 2

This then yields

lim =) A 0
eir0 O(BisE 4L +067)

We can conclude that 9> O(€'s) and is obviously less than

O(1) . This result can be written as

w = olewn) LSm>0

The dependent variables can now be expanded in terms of €



-

following the first order magnitudes found from the shock re-

lations. The non-dimensionalized expansions will then be:

P/fodles; = Po + €i7p1 r€Pat
Pr/pooie = Pol€io + €MIPy + €0 T pyr oo

W/ Ui = €ig"Uo + €L™MUy + €Uz + -+

V/ Ui = €uVo + €57TVL + €2y, 4 o

3 It is assumed that X will be of order one, from geometry,and

¥ will depend on €¢¢ to some power n' The unknown pow-
ers m and n’ will be determined by requiring that the govern-
ing equations, when written in terms of &, , yield a physic-
ally reasonable non-trivial system of equations. The govern-
ing equations are:

b%‘ ?_,e%';_*i =0 continuity
ugu. + HV%M, Kuv +f,a-§ =0 X momentum |

u%x + vax + kKut +l’_‘_i_'_b_e_ (e &momentum
HBEQ ¥ L HVB _ energy
DX Zta.'

where K is the radii of curvature of the shock surface and

H= l-l(.g. is the ratio of the radius of curvature of a constant |

b surface, with respect to the shock curvature at a given

value of x.




Substituting the expansions into the governing equations, we

obtain the following results relating the unknowns m and n:
. .’.)
‘%D_g ~ ofe€w.
X
n’\ .M
3_ = O(Edo )— ‘OLG“ ) ¥ momentum

1-n
éiem -~ O(eio ) continuity

X momentum

Applying the source condition .%%9.’: O(l)we find that m = 3.

It then follows that m'= % from the other two relationships.
Since 6"-%-,8 is now found to be proportional to 6.,':/2 ’

then in the limit as €lo» 6 , ,8 must equal TV/2 . The
shock surface is then a spherical shell which is centered at
the jet exit. The magnitude of the perturbation from this
spherical shell will then be derived by the use of the known
value of © 20(66:/2'). The radius can be written as R= 1 + G(x)
From this, the value of © can be calculated R’(x):G'cxké:(:e

4
The magnitude of G(X) is then O(&c’oh) which then leads to

the result R(x) = 1 + Fox) Ec.'ovz . This will be the

form used for R(X) . With the values of m and n'established

the expansions are
= po + p;,ec,:" + Pr€& t -
" fo/eio + Pl/ec'ovz + PZ +

= €12 Uo + €po Uy + EQ UL+ -

<] ¢ ‘o1 0

= €laVo * €Vt €5 Vet

€ Y X = X

og!
(1]
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The flow equations become considerably simplified for inte-

gration across the layer if they are written in terms of the

Mises variables x,\P ¢

The distance downstream is X and o is the streamfunction.

The flow equations 4n this coordinate system are

HP%‘% = ku + %)’L( (32.1)y momen-

tum eguation

WitV o+ = dv) (32.2) inte-
= s % grated X mo-
mentum
P/fzr = D(W) (32.3) energy
. equation
- - . (32.4) stream—
%% B f1ur- function defi-

nitions which
satisfies con-

= tinuity direct-
° H=1- K'a’ ly

W = .

ro%\ = Hx (32.5)

After substitution of these expansions and introducing an ex-
pansion for \a, and - in terms of X and ¥ and collecting
. terms of like order, we then develop the following system of
equations.
First Order Expressions

Momentum equation across layer

'B' = (33.1)
3% -o




Integrated momentum equation

UWo® = Uy — 2_1}%: \n %. (33.2)

Integrated energy equation

P° =.F° (3303)

Definitions of streamfunction equations

P = - __ 31 (33.4
-3% fouo Mo :

Definition of streamfunction
'bgg - Vo (33.5)
Bx Wo

For the second order results, we obtain for the momentum

equation across layer

2p:r = fgolo (34.1)
Y o
Integrated momentum equation

RUsUs = 2Uoy Uy = RPos Pi (34.2)
Pow Po
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Integreted energy equation

Pr = £ (34.3)

Definition of streamfunction equations ]

B% - 1 Us r.
S Pololo (Z%t *E TR (3L.4)

Definition of streamfunction

} s = Kegede + Va — YoMz (3b5) |

b x Uo (VIS L(°2-

For the third order results, we obtain momentum equation

across layer

2 = A e (o) (5

\

Integrated momentum equation

U + 2U2Uy + Voo = ZUgeUo, + Uzt +(35:2)
Vol + ZPoy Eggl - %gz; ‘h -
* PO**’ n%’ & %l'
2.
2 Pz _ Pay) — ¥-4 (} )
%ﬁ(% ‘pﬂ) BANg
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Integrated energy equation

%‘-‘%“%*(%)“"%ii'“%ﬁ

(35.3)
&+ g-l(ln
2€

Definitions of streamfunction

+ h +Paa + LgUs

?ﬁf = fou,r-,( (\ﬁ. Tt A Potr Po Lo
+ m) (% r %&Y) (35.4)

Ue Vo -
We must apply the expanded shock boundary conditions to the
outer edge of the loyer. In the limit as €20 , Mug?®

a
such that € Me,, = o(2) we obtain

First order results

’~ = I

Po = o8 IzI.%o (36.1)
fo = cosIR (36.2)
G = F'®) (36.3)
Vo 3 l (36.4)
o = o) (36.5)

Second order results

a0 n P

P 2F cos %w , (37.1)
L = —2F cos" 1@ (37.2)
P %

54




A = -F'F (37.3)

Third order results

’F,_:cos"g&(3Fz—l-F'z+ HL‘G') (36.1)

Q.:. to

VN 2E .,
pu= s (3F2 + e (14 Riaz)x
b*$(ri-1) e - F/™) (38.2)
G.= FF'-F'"%/ (38.3)
%\’z = (38.4)

Before we integrate the equations, we introduce another
transformation of the independent variable \P « This vari-
able describes the streamfunction in terms of the position
at which the streamline has crossed the shock. It is de-

fined from the source conditions as:

cos” TOx sinGw d@* (39.1)

2m

A point within the layer will then be described by the co-
ordinates ( @, Px ) . Substituting (36.1 to 39.1) in the
equations (33.1 to 35.4) and integrating across the layer

we obtain




First order system

| Po = cos"T§ | (40.1)
P° = coshgg-eo (40.2)
| 12 V2
Ue = (F “AZ\\“\ PO/POl') (40.3)
9 n
gQ = F}Fo L.cos -gasmgaodgﬂ (40.4)

Vo = uo%%e (40.5)

Second order system

9
Pr = ~2F ") + %L_“""’““?ai“.""g‘“@‘,(u.l)

ug = :21&_0(-2F""F‘ - 2P1/Po) (41.2)
Yo = P.lng‘cs%s_m%%&(%Jf Us + 1) (41.4)
Vi = (e - g + vals e84 |

Third order system

P2 = ms""%(s F*o1-F'2?« (42.1) 1
9

MelEls ° '39 Bt

o 3

)t LB RS a

(r 'k Yo = r:.)) °°‘5"7-Tz%~°5m9* A P |
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Pa = f’o(P’-/Po = PI-P:./'PO:" +(f’:./fo)z =
(P“-*/Pouz = faik/fon + %\n&)) (42.2)

U = 3/2U, (Q_uz‘,‘«lo, + Uiy + VS - Uyt - Vor +
(Z'P‘-"*(f’o‘i)fa*h%k = RPa/fon ln Po/Pay — (42.3)
Z Pow/fPon (Pa/pa = P‘*/Po.) = %r-,%(l" Po/m)")

¢
Qw Wo

BB e (R R

2

LS
Yo

Examining the above integrals, we note that the calculated
variables remain finite and non-zero from the vicinity of
the shock through to the contact surface. This indicates
that the solution is uniformly valid. ‘e now must exam—
ine the behavior of the solution as we approach the axis

of symmetry. This is importanp since in order to evaluate
the matching of the shock layers we must determine the ini-

tial radius of curvature of the shock surface, as well as
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its position in space. This requires that we know both la-
yer thickness and contact surface pressure in an analytic

form so that the matching of contact surface pressure and

position can be determined. For the case when Rwy = L0
the variables can be expanded in even powers of 9 near the
axis, and then integrated across the layer. These results
will then be used to illustrate the change in order of mag-

nitude of some of the dependent variables near the axis of
symmetry.

From the source conditions, we can write for small 9\“ @

Por R - (&P
which then leads to the first order results
Po = Po= L - n(FE)F

( "(’%ﬁ.)" (‘P a.»‘/z
= (3 -6ve))"
(w3 )*

The second order results then become
pe= H B (8" -9
Pt -5—39 ( - ‘P*)yz
= /356 (* ~ @a?)




It can be seen that as we approach the axis 9&, @ -» O(éctlz)
and

U €U = 0(ey)

V= guVe = O(E)

P = Po+ €uPr = 21 + O(EL)

P T Po/€io + Pr/eg® = Oltfen) + OQ)
x = o) y = ole)

i

The change in orders of magnitude of the variables then ne-
cessitates that a new expansion procedure be applied. To

first order pP.f and Vv do not change; however, WU and X

are altered and the new expansions must reflect this.




!

Internal Layer = Qegion 5 Analysis

The shock position in this region is described by an expan-
”~

sion in terms of even powers of g away from the axisji.e.,

R=1+ QELP + a;e.:o‘@“ =&
Based once again on the shock relations, we can expand the
dependent variables in the form

W= Elo + € Uy +

V = €uVe + €u% Vat -

P = Pt Pt

p = Po/eie * Pt

x = Xet y = g €

Substituting the above in the governing equations, we obtain

the first order system

These are of the same form as the constant density flow equa-

tions.

60




YWe therefore apply a constant density flow solution method

to this first order system. A streamfunction is defined

which will satisfy the continuity equation identically. This

is

}—\p = ~TolUo B_SE = _o—o
oY = -

If ¥ is known throughout the layer, then Ue and Ve can

be calculated. The equation for¥ to this order of approxi-

mation is

1) ~ 2 (Jg) = -%

?% ¥y X
Where'§ is the vorticity yithin the layer. For an incom-
pressible flow, the circulation must remain constant through-
out the flow region and this leads to the constancy of the
product of vorticity and distance away from the axis. lNot-
ing this, we can then develop the vorticity inside the layer

in terms of its value at the shock and its radial position

within the flow. The result is
— —_ — —_ R
T = 3G = —(h(ﬂze)z-*‘fqa)‘?‘”
r-
The equation that must be solved is then

@%(%) + };g{; = -T(n(%[ed)’#"(m)@?z(w.l)
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Substituting in a streamfunction of the form

b = APy BE+CF - DI+ EG°+ F + 637G
(k4.1)
we find from (43.1) that

A =—-12—(h(:gé")z + ‘-lai)

From the definition of the streamfunction we have

23%‘ = feve (45.1)
¥ = -Rl (45.2)
2%

From (L5.1) we find

() +H4a)F G + 2¢F + 269F. = Rl
(46.1)

\

At go = O which is the shock surface, we have Vo =1
which then gives from (46.1) C=1/2

From (45.2) we find - (n@é)a-"-{ai)@g +D+ szz = = Us
at the shock -37° =0 Uo = 2ai@ and from (47.1)

we obtain

h =0 G = —-Rai




These results then give us the first order velocity compo-

nents in this region.

Vo =1 - Ha:g = (h(?é;)z*“’“‘) g"' (43.1)

=3 (Qa(%)’w 4q{>g,+ 2az> (48.2)
and Po = _Fo = 1
The nomal coordinate af to first order as a function of @*

and 9 can now be calculated from

%—% = Yo (49.1)

We

Substituting in Ve and W in (49.1) and integrating, we

obtain after applying the shock boundary conditions

1 - ‘-la;go - (n(azw-lq:)g: =<§*/3}—3>2

or

go = —Hai + \[léacz—‘w{(h@gr.)"+4ch@‘- 1)
2(h(§§:‘f'+ ‘-Ia;) {30.1)

The pressure field can now be calculated from the known ve-

locity field given by (48.1) and (48.2). Ve must integrate
the streamwise momentum equation to obtain the variation of

pressure along the streamlines with velocity. This result is

Us +Vo' = Uow +Voy = 2(Pr - Pua)  (51.1)
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From the shock relations

-P-i*-;mi 3 --(.’3.(29 +2_a¢)@

Applying this to (51.1), we then obtain

fo= - vz + /M€~ 872 (RS +He) T + 2a)°
- (1 - L{.qii}‘— (ne%:\f-r "'{Q()g:)z/z_ (52.1)

From the conservatior. of entropy along streamlines relation-

ship, we also have

Ft = F:_ - F“* -f-}_‘-' (53.1)

Making use of the value of F};Flgand noting from the shock

' = . 2 AN ; .
relations that P, .= —(%G"-&D +2A.> @y /e can then write
for (53.1)

Pe= 20288 - (1 -daige - () +4ai)3t) /2
~B((nER) 4T + Rai) V2 * Y2 —
(g(f.;)z-f qu) @«2

The complete expansions for the dependent variables in the

near axis region can now be written

u = €, + olew?) (55.1)
V = EiVe + 0(&:3) (55.2) | :




P = 1 + € (--12- + ﬁ:}—e";,_g ((n%.)h-#a:) go + zqga
— (1 - 4aigo - (n(Bg)*+ Hai)gﬁ)z + 0(ee™)
= /e + 2005 - (1 - 4aigo — ( n@-)ﬂ Hq; )gf)z/z

_-6 t(( h(%;)z-‘-qcli)go +2_q;)72 + Yz -
(2(E)+ Ra) Tu* + Olei) (55.4)

These variables in the limit as ?,@-ﬂ‘ tend to infinity must
match the variables obtained from the equations away from
the axis as the variables@;?* vanish. If matching is ac-
hieved, then we have proof that the expansion for the region
near the axis was the correct one. Since in this analysis

a composite expansion for the near and far away from the axis
regions is not sought, then a matching of the solutions for
a special case will be adequate to indicate the correctness
of the expansions and will be easier to perform than a gen-—
eral matching procedure. The special case chosen is that
for a spherical shock. For this case @¢ = O and 'the inner

expansions can be written as

P
P
u
\'

1- €5 - eio((Gy g+ (- "B F ) - 3R 1
&+ - (38T ) B - 4w B (56.2)
€u(1- h@é;)’gf) + Oley .
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For the away from axis region, we have the following equa-

tions for small @, CP.

1 - LL(ZB') 9 + O(éce) (57.1)

(1 - B(E)$ Ve, + ok (57.2)
W GG (1 - - @w/§)*) "+ 0w (57.3)
= eco(@*/@)z + O(€‘°yz) (57.4)

< £ Yo U
1]

Following the same matching procedure as that for the exter-
nal layer flow, we define a variable?] which describes an in-

termediate region where both the away from axis and near axis

expansions are valid.

Since @ = 0@) and %.1; = o(e‘.o'/:.) then O(é;'?)<7‘{< o(1)

In this region, we have

O 7 = nPnlest

- 0 and lira
&0

=N
then i @
[ Jo

|
4
8

Applying the above limiting procedure in the region of common

validity, we must have

IIM (‘;‘o - )""O
€ -0

On fixed

wWhere ;'o and fﬁ denotes the various expansions for the vari- .

ables for the outer and inner region respectively.

66




Matching Vv
— 2\Y
b (o)~ e o - B3V )

In the-intermediate region, it is known that

2 P 2.)
1 S
& (25 (1 - @9
Therefore the above is zero in the limit, assuring matching.

lMatching X we can write
( A = Vzﬁlan(l £\'2
e (ear G BE] - < G () (2 - @32))
;h:o = (%s ¢ 2 \ 2600, g Pn

Again, making use of the expression for g,o we obtain match-
ing for W .
Matching P

lim (1 -—(ZJ%R s~ §Lﬂ €i(n 95"“

€0

* (- (EE) - n@) R e )
2 to

Introducing (ao again, we then achieve matchirg for P a

The above matching process has demonstrated the cur =tness
of the near axis expansion. 7'le now use the more general ex-
pansions, (55.1t 55.4) to determine the layer thickness anc

contact surface pressure distribution near the axis. The

results are -




L 2')2’/815 - _e_g:/?-(;_z(c_(ca- 1)%) - L“-%‘aﬁ + E)z( c - (c‘-:.)'/") +
Hait+£)e® - (2= D"V )+ (-ent-2a02 (e %@%’a)z(‘-iaz Q’%‘((c'-z)%

- c3> -.(ct- 1.\‘/2) - B/'-I) - e(:/‘/b ((% (c'-" -(c2- 1)3/1) - k2 1)4/2_))(
(zai* - (&({‘9; *+ 20{) - (QE'B%!Z + Fiz.)z(- z'g-&)z(%(c'-‘-(c'- J.)%) -
(- ) ~Bais BE) (3 - yea™) - g (e - P

p=1 + eiel-t2 + 2/ Mlen - B V2 (O(ZL) + 4ai) o + 20.)"

o v BT ) 8 (T
2(n@5)* +Hai)
c?* = Hqi?« h(é'-t&z + Hag b = \jn(%r’:;)’-+ Hq: -Ha;*

n%)’- + +ai

These expressions ( % and P ) will then be used in

|
i 3 -_-_ e.ff"(\] (6a:*+ 4 (4a, + n(IzIe‘)’) -y qi)z/ B* —eio(1-2a:)(4a; ((c‘-J.)"‘. c.)
f
i

Appendix (A) to derive matching conditions for the internal
and external layer near the axis of symmetry. From this pro-

cedure, we can extract internal shock and oxternal ;shock ra-

dii of curvature and the positions of the shocks in space.

This information will be sufficient starting conditions for
an integration across the layer of the away from the axis

equations. By this procedure, the full bow region, from the

axis to the corner region, may be calculated.




DISCUSSIQ:! OF RESULTS

From the analytical bow region results scaling parameters are
defined which can be used in experimental simulations and in
extensions of calculated results to other conditions. They
can be 'obtained by examining the first order results of the
bow analysis. For the internal flow, we find to the first ap-
proximation that the geometry of the layer (i.e., shock posi-
tion and layer thickness) depends on the parameters n y €le
em(Mj,en, ZSJ) and Rse, (Tf,eco, n, XJ') . To this list,
we must add external layer parameters €e and Rse . How-
ever, from the matching of contact surface position, it is
determined that R,e is a function of Rs.‘.,em,h,éh and there-
fore only €e is added, giving as the significant defining pa-
rameters of the bow region Gw, N, € ,€e, Rsy . These
may be further reduced if we consider very high llach number
flow for which €, and €. reduce to ¥y and ¥e . The geo-
metry of the flow is now independent of stream I'ach number,
For a correct experimental simulation, all of the above para-
meters should be matched between the actual system and the ex-

perimental setup.

Also, for a given system with fixed ambient and exhaust gas

composition (i.e., fixed ¥j, ¥ ) and nozzle conditions (i.e.,
Ya

fixel Bw,N ) the bow geometry will scale with Rs“oor Y for

all flight conditions (i.e., altitude, velocity) and system
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thrusts (i.e.,PoJ‘ ). This last effect is illustrated in figure
L which compares in a coordinate system which is reduced by
the scale Rs;, experimentally determined 3,72k bow region
geometries obtained at different values of TY . Also shovn
in figure (4) is a comparison between experimental results
| carried out at nearly the same TV but with different exter-
nal flow lMach numbers. As can be seen, the agreciwcat in
positions both for varying TV and Mme is very good, indi-
cating that the scaling parameters are correct,v and also that
for high Mach numbers the geometry is effectively independ-

ent of stream lMach numbers.

The correctness of the scaling is further substantiated by ex-
amining {igure (6) in Charwat and Faulmann<. In this figure,
many experimental values of axial bow layer thickness divided
by RsCo are plotted versus '\ . For both Mooe= 2,75 and 7.1
it is shown that the above ratio becomes constant as TV becomes
large, indicating the correctness of the scaling parameter

l Rs.;o + It should also be mentioned that the value of the
ratio reached for TY1 and Mee = 7.1 ic in agreement with

the value obtained from figure (4).

Having established that the geometries of the shocks and con-
tact surface are fixed in a reduced coordinate system, we then
note that to first approximation all the nondimensionalized

flow variables will also scale since they are only functions

of P, R/Ry3N,Oe, ¥, ¥evhich are fixed quantities for any




given point in the flow if the nozzle conditions and exhaust

and ambient gas composition are fixed.

Another result of the analytic analysis of the bow region is
that it defines the accuracy of the Newtonian impact approxi-
mationlwhich was applied by Laurmann6 to this problem. In

his technique, the contact surface position is determined by

the t dancing of Newtonian impact pressure along the contact

surface.

This approximation has been shown to yield good results for

surface pressure for the external bow region flow 25.

For the internal bow region layer flow, we must examine our
analytic solution to establish the accuracy of the Newtonian
impact theory in describing the surface pressure. From the
first order results, the layer thickness is a constant. Also,
to first order pressure is constant across the layer. The
actual contact surface pressure will then be determined by the
shock shape, which for constant layer thickness is the same

as the contact surface. Therefore, we would expect the New-
tonian impact analysis to give reasonably good results for

the internal as well as the external flow contact surface pres-
sure. The contact surface shape in the bow region,as deter-
mined by the matching of the impact pressure across it, should

then be reasonably well predicted by Laurmann'56 analysis.




To test this hypothesis the contact surface position predict-

ed bv Newtonian impact analysis is compared in figure (5) with
the predictions made in this study and in reference (7) for a
characteristic bow interaction. The agreement shown is very
good, indicating the usefulness of this approximation to quick-
ly obtain bow region geometry. The success of the technique
in this axisymmetric case gives one confidence in extending
this simple technique to asymmetric bow region flows where

the angle of attack of the jet to the free stream is not large.
For the transonic corner and supersonic far field regions,
Laurmann's 6 technique must necessarily fail due to the thick-
ening of the layers and the acceleration of the flow in these

regions.

A number of calculations of the bow region flow have been car-
ried out, utilizing the analyses outlined in the preceding
section and in Appendix A. These calculations have attempted
to: (i) compare predicted bow interactions with results from
a1 existing numericai technique; (ii) compare predictions

7. (1ii) determine the

with an experimental result by Zakkay
variation of bow region geometries and pressure distributions
with variations in ©Gee and zfj (primary jet flow parameters);
(iv) give detailed predicted properties for twe cases which

are characteristic of "cold" ijet and actual jet operation.
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In the comparison of the present predictions with those of

Rudman and Vaglio-Laurin7 identical stream and undisturbed
plume parameters were utilized. Predictions, which included
terms with errors O(€&) and O(Ec?)wer"e made of flow field
geometry and pressure, as well as the other variables of in-
terest. As can be seen from figurf (6), the present results
and those calculated by the numesrical techﬁiqué of reference
(7) do not agree very well in position, although shapes are
similar. Also, the comparison of pressure distributions in
figure (7) do not agree very well. There are two possible
sources of error which could cause the poor agreement shown.
The first possibility is that the example calculated, with
de,%j = 1.L is just too difficult a test for the present the-
ory, which is based on ha\}ing 8e,¥'=1.0, Since the internal
flow solution proceeds in half powers of €!o then for the ex- ;
ample calculated terms higher tnan the first are really not :
very small. ?his causes poor convergenc: of the solution,
which is indicated by diminishing oscillations of the vari-
ables about their correct values as higher order terms are
added to the solution. This type of behavior is observed in
figure (7). However, figure (6) does not show this eff .ct; |
and, therefore, this cannot be the total explanation for the i

lack of agreement.

A possible source of error in the technique of reference (7)

is the imposition of a point interacticn (i.e., non penetra-




tion) for the corner region in the calculations of reference

(7). As will be explained further in the section on the cor-
ner region, the point interaction assumption puts a constraint
on the bow region calculation, which could possibly over-em-

phasize the corner region flows upstream influence on the bow

layer properties. This could result in the large difference in

internal layer thickness which is observed in figure (6). Tak-

ing the above two effects together, i% is possible, within the
bounds of error of the present results, to show agreement bet-

ween geometry and pressure distribution.

It should be mentioned that the results of reference (7) have
been compared favorably with the experimental results of Zak-
kay 7. However, the comparison is not definitive since the
analytical plume flow model used had an exponent of 2.5, which
has been shown in the section on jet exhaust models to be in

large error for the case calculated.

Good agreement between the prediction of bow regioﬁ geometry
and the experimental results of Zakkay7 is shown in figure
(8). No linear scale was given in the experiniental schlieren
photograph; and, therefore, it was necessary tq arbitrarily
scale the experimental and predicted results by setting the

jet to internal shock distances equal to each other. The

contact surface pressure distribution for this same case is
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shown in figure (9). Two other calculations were made for
these same conditions with the only difference being that
in the analytic plime model, exponents N = 5.0 and 2.5 were
used instead of the more correct 4.17 value. In figure (10),
these predictions show a marked sensitivity of bow region geo-
metry (i.e., shock ard contact surface position) to plume
model exponent. The variation of the bow geometry with plume
exponent is larger than the error bounds of the solution in-
dicating that if accurate predictions of bow region properties
are to be obtained then the plume model used must also be very

accurate,

In noting the good agreement betiween the predicted and experi-
mental geometry, one is tempted to state that the calculated
flow properties must also be in good agreement with experi-
mental values. However, this is risky in that experience with
co-flowing plumes and the good agreement of the calculated
results of reference (7), using an incorrect plume model, with
experimental results show that the coarse geometry of the
interaction (i.e., shocks and contact surface) can be pre-
dicted relatively easily but in all probability the detailed
experimental flow properties are not so easily matched by cal-

culations.

Figures (11), (12), (13) and (14) show the effect of varying
Be ang 8j on bow geometry and contact surface pressure

distribution.
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From figure (11) it can be seen that increasing ©Oeo from 125.5
degrees to 185.0 degrees, which could be accomplished by eith-
er increasing 63n or decreasing Pﬂj , results in a delinite
increase in layer thickness both for the internal and external
flow. ‘- Since external layer thickness is directly proportion-
al to contact csurface radius of curvature, then an increase of
layer thickness indicates an increase in radius of curvature.
Consistent with the increase in contact surface radius of cur-
vature, we note from figure (12) an increase in contact sur-
face pressure with an increase in ©s. In general increases
in ©Oe with all other parameters fixed give increases in
contact surface radius of curvature, yielding a more blunt bow
region interaction. In figures (13) and (14) we can see the
effect of increasing 33 with all other parameters fixed., In-
creasing ¥j from 1.2 to 1.4 in figure (13) causes a definite
thickening of the internal and external layers. Also, fronm
the contact surface pressure curves in figure (14) we note
that increasing {j results in an increased pressure level.
Both of these effects are primarily the result of an increase
in radius of curvature of the contact surface. In conclusion,
an increase in either Owor Kj for all other parameters fixed
causes an increase in racius of curvature of the contact sur-
face resulting in a more blunt bow interaction. In this case,
pressure, density and temperature within the layers dg not

decay as rapidly as in the less blunt interaction case.
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In figures (15-18) detailed distributions of flow properties
for a "cold" jet and actual jet operation are given. The cold
Jet case, shown .in figures (15,16) would be representative of
a wind tunnel simulation where the ratio of jet to freestream
stagnation temperature is 2.0 and air is used as the jet gas.,
The actual jet case shown in figures (17,18) is representative
of a real system that is operating at 150,000 ft. altitude,
whose jet gases are composed primarily of H20 and CO2 which
is modeled by setting xj = 1,24 . The ratio of jet to free-
stream stagnation temperature is .75, which is representative

of the actual system.

As can be seen from figures (15) and (17), the flow geometry,
streamlines and isobars for the two cases are very similar.
However, from figures (16) and (18) we note wide differences
between the two cases. In figure (16) it can be seen that
the velocity discontinuity betwsen the internal and external
flow is very small at the contact surface and conseguently,
mixing effects along it will be small. 'Je also note a mode—
rate jump in density as we go from the external to internal
flow. Since pressure is equal across this surface, then the

above result indicates that we have a less dense and hotter

external layer flowing past a more dense and cooler internal

layer. 1In figure (18) we note some significant differences
from the "cold" jet case of figure (16). Here, we find that

there is a large velocity discontinuity which leads to strong




e

mixing effects. Also, the very large discontinuity in den-
sity indicates that a very hot and low d« "~y external layer

is flowing past a much cooler and denzer internal layer.

If heat transfer were allowed, there would be a heatinz up of
the cooler internal layer by the hot external layer. Tt can
be concluded that in the actual case mixing and heat trans-

fer effects will be much larger than the experimental simula-

+tion case.
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ANALYSIS OF CORNER REGIOH

For an exact treatment of this region, the inviscid external
and internal layer bow flows, as well as the relatively ~o-
tionless core 1nd the viscous mixing revlon separating the
core and bow flows, must be simultaneously calculated. The
reasons for utilizing this coupled approach have been discus-
sed previously in references (2) end (3). Such a complex
treatment is beyond the scope of the present study and sim-
plified analyses are applied. Unlike the bow region and dovn-
stream region analysis (to be discussed), the corner region
flow is not amenable to analytic treatment because of its
transonic nature and complicated coupling with the core flow

and the viscous layer separating these regions.

An approach is then taken thch will provide an estimate of
some of the flow characteristics within the corner region anc
will also assess the significance of the corner region {low
on the bow and downstream region solutions. In brief, this
section vill outline: (i) the significance of the corner
region flow on the bow region and dowvnstream flow properties
as calculated by their respective analyses; (ii) an engineer-
ing estiméte of the pressure-level in the core region; (iii)
the location of the plume boundary based on this core pres-
sure; (iv) the qualitative penetration of the intercepting
shock layer mass flow into the internal layer, and the loca-

tion of the internal layer sonic line.

79




Before establishing the significance of the corner region flow
to the bow and dovmnstream flow solutions, a brief description
of the flow in the corner region will be given. Referring to
figure (19), the jet gases upon exiting the nozzle expand in-
to the' low, nearly constant pressure core flow. An intercept-
ing  shock and shock layer form which are identical to those
for a plume in a quiescent ambient of the same pressure. This
intercepting shock and layer eventually intersect the strong
internal shock, resulting in a triple point shock configuration
similar to that found at the Ilach disc for plumes in a quies=-
cent or co-flowirg ambient. A complex system of shocks and
expansions are then generated within the internal and inter-
cepting shock layer, which accelerates and turns the flow in
the downstream direction. The viscous layer separating the
core and internal flow reattaches at a downstream location,
recompressing the flow to a pressure greater than that of the
core. All of the above flow processes interact, establish-

ing a unique geometry for the corner region. '

Having defined the corner interaction an order of magnitude
assessment of its effect on the bow and downstream flow so=-

lutions will now be given,
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Si~nificance of the Corner 2esicn on the Bow and Downstream

Solution

Since the bow region layers are thin and bounded by strong
shocks, then the flow properties within the layers are strong-
ly influenced by the local shock conditions and only weakly
influenced by the conditions in the corner region near the
sonic point. 'Je can therefore conclude that the bow layer
properties can be calculated independently of the corner re-
gion without incurring serious error. Since, as is discus-
sed in the next section, the downstream flow depeinds on the
balancing of jet and external flow interaction forces along the
contact surface, then the significance of the corner region
flow on the downstream soluticn is assessed by determining the
axial force balance that would occur if the corner region flow
is included or neglected. For the case when it is neglected,

°
the jet flow is assumed to expand to its vacuum limiting angle,

e .

The particular example studied herein is that given in a report
by Rudman and Vaglio—Laurin7. The axial force created by the

jet flow is given by
- (% (g7 4A - (prxan

Applying this to the cases with and without the corner region
and taking their difference divided by the total force of the
jet, we obtain '
Q EE‘ [ cos '%:-nycosgbdg) ? cosQI ces” :‘"9 ‘1?
P [ cos Eg, sing cosP 4P

o]
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VP N

where - J» < § < 1 and O < V < QPps
Substituting in the numerical values €a = 130.45, Prs = 55 de-

grees, N = 4.,17,FcosV = %— we obtain

A_E-_x._ = .0425 or 4 percent

Fxtota!
This error is well below that created by using the approximate

analytical source flow expression (1) which in some cases can

15

be in considerable error .

Since the details of the corner region flow are not signifi-
cant to the calculation of bow or downstream properties, then
engines ring estimates of core pressure, plume boundary and

penetration will be sufficient to approximate the corner re-

gion flow for this study.

Core Pressure
Qualitatively, the external and internal flows do not bend im-

mecdiately dovmstream after passing the intercepting shock la-
yer boundary due to the consicerable lateral momentum impart-
ed tc the layers in the bow region. Instead, the external
shock moves continuously outward along with the bulk of the
external and internal layer mass flow, leaving behind in its
"vake" a low pressure (with respect to the shock value) flow
adjacent to the core region. On this basis, we would expect
the core pressure to be low and of the same order as ambient

pressure.
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In determining the core pressure, the experimental results of
Finley % Charwat and Faulmannz, ancd Jarvinen and Adams 26 wvill
be utilized. From fizure (7) of Finley, it can be seen that
as T is increased, the core pressure drops to a nearly con-
stant value. This behavior is also consistent with figure (11)
in Jarvinen and Adams and figure (15) in Charwat and Faulmann.
In our analysis, which is the limiting case when T">>1-, the

core prescure will then be at a constant level for all values

of TY a

These r-sults are for exit llach numbers of 1.0, 2.6, 3.1, 3.9,
and 4.3 and freestrean !lach numbers of 2.5, 2.75, .6 and 2.0 .
Je therefore conclude that this behavior with T1 does not de-

pend on exit or freestream Mach number.

Noting the lack of depencdency of the core pressure on ™ for
TI>1 we can now correlate all experimental results to estab-
lish the best value for P core. From figure (20), it is seen
that the most general result, especially for high external
Mach number, would be F>core = 1., This result is reason-
able considering the wide variety of‘rqn.quunder which
Eiﬁ%ﬁ?i has been obtained and also in consideration of the

nonuniformity in pressure throughout the core region.




Plume Boundary

As was mentioned previously, the plume develope in a re_

of nearly constant pressurc and, therefore, it is analogous
to the case of an underexpanded jet into a still ambient. Ta-
rious analytical approaches describing the location of the
boundary of the plume have been developed . (for e5. see re-
ference 27 and reference 23). Ilost of them give reasonable
recsults near the nozzle exit but diverge considerably from }
the actual boundary avay from the exit. For this study, an
analytical technique 29 1s usec vhich assumes a fixed plune
shape for all nozzles when the coordinates are nondimension-
alized with respect to plume boundary maximum radius and its
axial coordinate. The advantage of this method is that it

gives the correct boundary location not just near the nozzle

exit but far from it as well. The method relies on setting

e

up monentun and force balances obetween the exhaust and core {

region gases. The shape of the plume when nondimensionalized

is represented well by ;
. Y2 j !
= X - L/2n 7(;(_,,,) .i

Yy —Za——zj_l(( /x) = Yen(x/xn)

where 5 = 2.5 gives the "best" fit with numerical data. The

balance of lateral and axial momentum Zive respectively
Kom ‘

Z,Pcorefo %dx e POJ' Ax gi(x'n/r"‘) 1

FPeore '!T'CZX,: = POJ' A* ;z (XM/I"*)
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where f; and f; are functions of the nozzle geometry and ex-
haust gas conditions. From the above expressions Xm/ v and
am\/r'.p can be found for any jet exit and ambient condition,
thereby giving the plume boundary. Tﬂis technique was uti-
lized in locating the plume boundary for the example gziven

7

in Rudman and Vaglio-Laurin's study. Good agreement is

found with experimental results as can be seen in figure (3).
Since we are dealing with highly underexpanded plumes (i.e.,
TI»1 ) where the intercepting shock layer is thin, then this
boundary location is also assumed to be a good approximation

for the intercepting shock location.

Penetration of the Internal Layer
Referring to figure (19), We can establish a qualitative des-

cription of the corner region flow. The reflected shock ema-
nating from the triple point, at a, crosses the intercepting
shock layer and intersects the plume boundery at c. Since

the boundary must be at constant core pressure, then the sncck
must be reversed and reflected as an expansion c-b. Crossing
the layer, this expansion then intersects the slip stream sur-
face at b, being once again reflected and partially trans-
mitted as an expansion into the slightly supersonic internal
layer flow d. The surface b-a remains nearly straight since
only a small drop to sonic pressure over this region is ex-
pected, which requires very littiz turning along b-a of the
supersonic flow in region a-b-c. The internal flow sonic

point occurs at b because if it were sonic before this point
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the non divergence of the streamlines in this region would

unrealistically prevent the flow from accelerating further,
Also, the sonic point cannot lie beyond b because the di-
verging nature of the flow would not allow sonic velocity

to be achieved from the initial subsonic state.

Within the slightlv supersonic flow region, d, the trans-
mitted expansions b-c are reflected off the nearly constant
pressure sonic line surface as compressions. These retui+~

to the intercepting shock layer and are transmitted to the
core region. The continual proccss of reflection, transuis-
sion and interaction of these waves results in the rapicd turn-
ing of the flow in the dovmnstream direction as is illustratec
in figure (19). Some idea of the shape of the sonic line and
its limiting characteristics can be obtained by applying the

ideas developed by Hayes and Probstein 30 for blunt body flows.

Taking W as the angle that the contact or slip stream sur-
face makes with the sonic line at these respective surfaces,

A \
we can write

tanw = —Q:L

(%&)b,e
where @%)b" = _?B,e— %b/ﬁ’.b,e

and %b,e is streamline velocity, %b.e vorticity and 8 and n
are the coordinates along and pérpendicular to the slip strean

and contact surface. At point b we have nearly a straight
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slip stream b-a and therefore the second term in (%;%)b is
negligible. Also, the shock is nearly spherical and in the
vicinity of point a the vorticity generated is small. Under
these conditions, (g%)b:: O aid therefore w ™ W2 ¢
b. Ap the contact surface, point e y different conditions
prevail. Using the first order expressicns derived in the
bow region analysis section and assuming f'or simplicity that
the internal shock and contact surface are spherical in nat-

ure,then we can write in terms of nondimensionalized variables.,

ﬁ?e = '1(%£iyt§5 qst:= vn %;-??

9

Using Rudman's' example, we can write

(), = -3 (&) - L) = -.e3p

also, we have

? = I = 154
(63), = " %,

The ratio of these expressions gives

tan W = 1_.&5_ which for @ = 55° gives w = 62 degrees
Now that the sonic line angles are estimated at both bound-
aries, we can then sketch its location throughout the layer

as shown in figure (19). The initial turning of the scnic
line in the downstream direction from point b,due to centri-
fugal pressure gradient effects’y is typical of the rapid tran-

sonic expansion occurring in ¢ and gives the sonic line its
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characteristic s shape. The last limiting charactericziic
lines which originate in regions d and f are also shown in
figure (19). Having obtained a qualitative estimate of the
penetration of the intercepting shock layer into the internal
layer, we can now make an estimate of the actual penetration
for the example calculated by Rudman and Vaglio—Laurin7. The
first step is to estimate the intercepting shock layer thick-
ness which can be determined on the basis of mass flow con-
siderations. Subscripting layer properties by £ and utiliz-

ing standard notation for undisturbed plume quantities, we

can write
Gen
PalUyg RTRs sindy 3¢ =f_f>co: Uew; 2T RS sing d9
O

Substituting in the analytic expressions for fPeo; and Ut

which can be derived from the analytical plume flow model,

and letting
fu= Pad(t + 1/2) Ug = Uasi (1 + €i/tan 17°)2
€io
we obtain G

3 ﬂ.ewfa wadll  ini
—ﬁs_io cos ]]'6% Slne_g_(l"' ew/ﬁn\'7°)

For Qe = 130.45° ©a = 55° and €;, = %_ we
have 3 = 0627
Roia

This value is characteristic of plumes where T(31 |  The se-
cond step iavolves determining the reflected shock position

from the triple point solution. Using the initial conditions

Mm; = 2.2, ,8 = 86° for the strong shock and,@: 20°




for the intercepting shock, we obtain the reflected shock po-
sition from D'Attorre31 which is shown in figure (8).

Assuming that the Mach number downstream from the reflected
shock is constant, we can then determine the initial reflected
expansion wave's position and intersection with the slip stream
surface. The position of this wave as shown in figure (8)
defines the extent of the penetration into trhe internal layer.
alike the point interaction or zero penetration mcdel pro-
posed by Rudman and Vaglio-Laurin7, we note a considerable pe-
netration of the internal layer by the intercepting shock la-
yer flow. This fact is borne out experimentally in a study 32
on the similar problem of a jet impinging normally and at an
angle to a flat plate. The constraints on the'numerical so-
lution of Rudman and Vaglio-Laurin 7 imposed by their assump-
tion of a point interaction (i.e., zero penetration) for the
corner region could be a source of considerable error in their

calculation of the bow region.

It should be mentioned that the large penetration indicated in
‘this study does not necessarily mean that the bow region flow

is strongly influenced by the cormer region penetration. This

{s because, in the absence of the cormer region flow, the inter-
nal flow streamlines would penetrate the layer much like the
slip stream separating the internal and intercepting shock

layer flows. This can be seen by comparing streamlines ob-
tained from the bow analysis in figure (17) with the slip

stream position shown in figure (8).
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From the reesults presented a scaling criteria for the corner
region is now outlined. The mé;jor characteristic to be scaled
is the undisturbed plume boundary, which for a given nozzle
and exhaust gas composition depends on p°j/ Pee . For an
exact simulation of the plume boundary, this ratio must be
matched. If, for a given system, it can be shown that the
plume boundary coordinates are proportional to Rsi or Tf'h'
then the plume boundary will scale like the bow region. The
technique * used to locate the plume boundary normalizes the
geometry by Tm and Xwm the plume maximum radius and its
axial location. When these are plotted ac a function of

Po;/Pwe it is found that

Since Y is proportional to P°j/Poo.Mca.' then

1
m , Xm < Tr/zMaoe
L™

Thus; 4Y Meos is fixed, then the plume boundary will scale
with Rs.‘o . The scaling of the bow region and plume boundary
then requires that X,’ , Se 5 eon, n , and Mooe be fixed over
the entire flight range. Since Mee does not vary greatly
over a typical system trajectory, then the above scaling re-

quirements are satisfied fcr some systems of interest.

Ty 2k
This scaling result is substantiated by some experimenta{’daﬁa

in which the plume boundary triple point distance away from

the axis, when divided by the scule length Rsco is nearly con-

stant for values of TY from 30 to 627.
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FAR FIELD REGION ANALYSIS

The downstream flow region between the erternal shock and axis
| of symmetry consists of supersonic layers bounded by mixing

regions and crossed by a wake recompression shock as ic illus-

trated in schematic (3)

.mixing region

. Shock

{ “N — — ! g
e an i o g R TR .mixing region

e

Schematic (3)
This general problem cannot be handled by approximate analy-

tical techniques; therefore, we will seek to solve a reduced
problem within the framework of the assumptions listed in the
introduction. This problem will involve:

1) the neglect of all mixing regions (wake
and shear surface)

2) the neglect of the recompression shock

Assumption 1) will be valid at moderate altitudes and 2) will
be reasonable since the recompression shock is weak compared
to the external shock. A schematic of the flow and notacion

l#i' r_x
1 -— S -

used is then:

b
Schematic (4)
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The numerical matching criteria between the internal and exter-
nal flow requires that static pressure and flow deflection must
be equal at the contact surface. Also, the stapsnation pres-
sures will be equal due to the upstream matching condition.
The particular region of interest in this downstrean analysis
will be at a point characterized by the distance L., where

L>> Rs,Res. The ratio of Rsto L will be a significant
parameter for the downstream problem and we denote it by the
symbol de = Rs/LL - Once agaif, as in the bow region, we will
be considering the case when Mu;,Mu 3 1 4 €6 €0<c] An ap-
proximate analytical method of soluticn is available for the
external layer flow near the shock surface in region 1. This
method was first applied by Cole 33 and involves taking the

limits in the inviscid flow equations as the perturbation quan-~

tities.

Mooe_"’m, €e —» O, e > 0

Mewede = M;e Qe €e —v o(1) |

The solution found by this procedure is valid to a distance of
O(fose‘-) measured inward from the shock surface. For attached
shocks, this solution would be valid throughout the external
layer. However, if the shock has a blunt nearly normal for-
ward region, the external layer becomes thicker than the above
order of magnitude and the solution breaks down away from the

shock toward the contact surface. This is due to the viola-

922




R e B S e

tion in the blunt region of the assumption that the shock
makes small angles with the free stream. As was pointed out
by Cheng and Kirsch 3k in the equivalent unsteady case, a
region of thickness O(SeL) y denoted 2 in scaematic (4), is
then found near the contact surface which requires a differ-
ent e.pansion in order to develop a valid solution in this re-
gion. The solution found in this "entropy wake" matchtes with
the outer layer, and the composite expansions for the entire

external layer will be given.

For the internal layer, we have two conditions imposed by the
external flow at the contact surf:.ce, which can be used to es-
tablish the orders of magnitude of the flow variables within

region 3, the interior layer. They are:

PCSQ = PG ¢

(%%e z @%‘).

Based on these conditions, we can then prescribe expansions
for the flow variables in terms of perturbation parameters
that will lead to a system of analytical solutions for the

inner layer.

Like the external "entropy wake" the internal layer is of thick-
ness O(SQL) « Utilizing the orders of magnitude found from

the contact surface and upstream bow region conditions, we
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then develop expansions which will be solved giving expres-
sions for layer thickness and other variables of interest.
Numerically matching these expressions with those of the ex-
ternal flow, along the contact surface, we then achieve ana-
' lytic solutions in th» far downstream region. These results
are found to depend on the upstream bow interaction between
the plume and external stream. Taking resulte from the bow
E region consistent with the accuracy of the downstream region,
we then find the complete solution for the downstream flow.
In the following discussion for the external flow, frequent

reference will be made to the work of Cheng and Kirsch 3h.

They solved an unsteady problem that in many ways is anala-
gous to our external layer problem by the application of the
hypersonic equivalence principle. For details of the exter-

nal layer analysis, the Cheng and Kirsch paper should be con-

sulted.

- _— g . T T - .
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External Layer - Regrion 1 Analysis

Utilizing the notation illustrated in schematic (4), the fol-

lowing general set of equations and boﬁndary conditions for

the downstream problem in terms of von ifises variables

are:

e dXe dWe

Uet + Ve* + %‘!51% = 3(%)

po/pet = $(We)

Boundary conditions at external shock

Pe = Poe + 23¢ Pese (M, stn*Be - 1)

Fo= poo/ (B5h + grrfrgamss) “Pove
Ue = Use (1 = 2(Mud sitB8e =1 )5 r)Mad )

Vo =Une (2CMoean4, - 1) cot Be fires) Mo

Boundary conditions at contact surface

Pec' = PC cs

dRe, - 4R
dx R
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(1.1) stream-
line slope

(1.2) continu-
ity

(1.3) momentun
normal to
streamline

(1.4) Bernoulli
integral

(1.5) entropy
integral .

(1.6)
(1.7)
(1.3)
(1.9)

(1.10)
(1.11)




Velocity parallel and normal to the shock are:

Uwe cos Be (1.12)
€e' Une sin Be (1.13)

< 1)
1

The expanded Rankine-Kugoniot relations lead to the follow-

ing orders of magnitucde for the flov paranmeters near the

shock:

F¢ > O(feo. uo:e Sez)

(2.1)
Po ~ 0(pac/ce) (2.2)
Ue ~ Q (Uee) (2.3)
Ve' ~ O (ee8e Usse) (2.14)

where €e is evaluated at the point where .8 = T/2 . These
conditions will be the upper boundary values for the external
layer. From the orders of the variables near the shock, the

dimension normal to the shock can be inferred from continuity

considerations.

Yy ~ O (€eSe L) (2.5)

The dimensions of the streamvise coordinate are easily seen to
be

K ~ O(L-) (2.6)
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These orders of magnitude, (2.1 to 2.6), are then used to form

asymptotic expansions which are

} 'Pe - fa:.u:e éez Poe +
[‘ po ® _foocfoe/éc"‘
Gleg = Uag + Sea Uoce Use +

Ve = Uee Oc €e Voe +

%Q = L3 €e &oe*‘"'

Substitut\ing these expansions into the equations of motion,

(1.1 to 1.5), and boundary conditions, (1.6 to 1.13), we can
develop a sequence of equations which can be solved and then
summed to yield the solution to any desired accuracy in terms

Of e‘,SQ) MQQ .

The first order system from the above procedure is

2o = - & Ul

b\PC (301)
%?.(R'/foe) = O (3.2)
\%Qf»': : -Po. Rse (3.3)

§ (3.4)
Voo %ﬁ'

The boundary conditions on the above at the shock surface are:

foe = (@) (1.1)
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Foe = 1 (4.2)
goe - 1 (1&03)

Integrating (3.1 to 2.4) and applying the boundary conditions

(4.1 to 4.3), we obtain:

Poe = (‘iagi‘) f‘v?&(e-%*) (5.1)

Poe = Poe/ (dRs ) ©(5.2)
Yoo = d¥e (dR (5.3)
QL" ( ) (5.4)

Voefz b e
dXe

Making the substitution

2
VYeu = Roew/2 (5.5)
o~ -
\‘Pe ® R.::/Z (5.6)
in the above, we then obtain results identical to those of
\
Cole 33

e (48" + _;%Eau - Bef) 6y

Poe = poe/,< (6.2)
s : (6.3)
%/ , :/fs'f Jes (i§m"3) (6.4)

As previously mentioned, these results are expected to hold

o8




near the shock surface; however, their wvalidity near the con~
tact surface has to be examined. From the bow region solution
we know that a blunt interaction occurs. Consequently, as

we follow the shock surface upstream to the vicinity of the bow
region, we note that the shock must become nearly normal in
form. Therefore, it invalidates our assumption of small free
stream to shock angle, initially made in our above analysis.
Under these circumstances, one would not expect our expansion
procedure to be valid in such a regionjand this turns out to

be the case, as was found by Cheng and Kirsch 34 for the un-
steady problem. What we must do is alter our expansion pro-
cedure so as to be consispent with the strong part of the shoc¢k.

External Layer-Region 2 Analysi.
Following Chers and Xirsch 3k we assume that initially, due

to the strong bow interaction of the jet and external flow,
the external shock moves out in a blast wave manner. This

requires that the external shock take the form:

= 4
R‘. = AXc,z

as Xe¢=» O where A is a function of the upstream bow inter-
action. A requirement which must be met by the contact sur-

face in the vicinity of the bl'uc interaction is that:

favol e/ Rae >0

29
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This states that initially the contact surface must move out-
ward slower tha‘n the external shock, thus guaranteeing the
dominance of the blast wave result for the upstream interac-
tion. . Up to this point, we have paralleled the unsteady
problem quite closely. The equivalence principle is most ac~

curate near the shock with the streamwise velocity given by:

Ue ~ umt + O (ume Sez)

The error involved in assuming We ~ Uweis seen to be small,
(Uen 8¢
of error O we®e ) . However, as we approach the contact

surface we have for the streamwise layer velocity, from the

Bernoulli Integral.
Ka-t
U -~ uOOe + o(ume Se,zcer. ))

The error involved in taking W ~WUewe in order to apply the

equivalence principle is seen t-~ be large for ¥e = 1 of
z(!.t?_l..'
@] (Uooc YS ‘>) a

In order to utilize the equivalence principle, we then must
stipulate that ¥e cannot equil one but can be near one as
long as de is small enough so that the term Sea%';‘u does
not become of order one in the downstream region of interest.
If these conditions are met, then we can apply the equival=-

34
ence principle and, therefore, make use of Cheng and Xirsch's
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results within the entropy layer.

Assuniing this form of initial behavior, 've have then speci-
fied the type of breakdown of the solution due to the near-
ly normal character of the shock in the vicinity of the nose.
- 34

It was fou that the expansion for d, based on flow near

the shock for initial blast wave behavior would be of the

fornm:

y ~ o(ln You) + © (E.(lnYor)z)

which would then become infinite and invalid as an expansion
as Yo,‘-)O y Or as we approach the contact surface. This
form indicates that the expansions cannot be made uniformly
valid by simply altering the scale of Yo,; by a pover of €e.
In his analysis, it was determined that the scale normal to
the shock snould be in terms of Yog. to some power which is a
function of €e . 'le can then determine the orders of magni-
tude of the cther variables by applying entropy an‘d energy
conservation principles.

Following Cheng and Kirsch 3k we then establish a new set of
variables, fulfilling all the necessary conditions within the

region adjacent to the contact surface. These are:

Ve = U«—)c Sc V;e + e (7.1)




Ue = (Uae +- (7.2)

Pe = Poeloe Se* Poe+ - (7.3)
Pe T Pooe Rex Poe/€e t (7.4)
.3Q_ = Se L go + . 0 (7-5)
x = L x (7.6)
% = Rew /o2 (7.7)

Substituting these variables into the equations of motion,
(1.1 to 1.5), we obtain the following set of firs: order re-

sults:

%%‘ e (8.1)

§ | s %
Boo = Joalx)?) = -12-_£P.5%_4“ (8.2)
-P‘o‘ = Ee/o-;‘f? (8.3)

\701: = —Bxgn (8.4)

The carrying out of the integration in (8.1) and

(8.2) gives

e = Poelx) (9.1)
pid, -

Yoo = Yee' (%,0) = ¢ B/ Boe  (9.2)

lMatching of the inner to the outer solution is carried out by
determiningvthe behavior of the solutions in an intermediate
region where they are both val:d. The results % of this

procedure are:




~ P ~
(B + 4280 BB - RS2 o
@3'&‘)2. , A%En'ﬁg@ _(R“)z)(lo.z)
% xt 2 R';"
Equations (10.1) and (10.2) are nonlinear second order dif-
ferential equations for the pressure distribution and shock
position. If we can obtain an inner layer solution which

gives R<, as a function of Poe then we can combine these

results into the above to deternine Rse and ch .

Internal Layer - Recion _ Analysis

Referring once again to our flow diagram to establish the
system of coordinates, we ‘have the following set of equations
and boundary conditions for the downstrean internal layer

problem in terms of von ilises varialles.

\%% = -\6-'? (11.1) strean
line slope
R, =1
% PLU R LR S
_'1% ab\;(h' + BBEL‘ = O (11.3) momentum
F ¢ W normal to strean-
line
u;u.v,;z “+ %KtJ.EL — %(WL) (11 L) Bernoulli
- ‘ - L ] -
" B Integral
RS . T
Pu/f‘, —— 3'\\-\);) (11.5) Cntropy

Integral




Boundary conditions at the internal upstream bow shock are:

( = Poc + 2% Boos (Mo sn28¢ — 1) (11.6)

w 4y !

> O

L e S ‘a =2
Pi = Pt/ (8% * GrDmEswar ) (117
U = Usg (1- 2088 - W) Qo) (11.9)
oi = WUeoc (2( gﬁgsm’é\c - l)cotﬁi/k,}u) ﬁwf) (11.9)

Boundary conditions at the contact surface are:

Pisk & Pocy (11.10)
R = AR .es (11.11)
e = i

At the axis, R: = 0O , the symmetry conditions are applied.,

Also, in the bow region solution, we note the condition that: ]
P':-d‘-a,hq‘h'oh = Pe "\'Aa,mﬁon (11.12)

From the external layer results, 3¢ can infer the order of
magnitude of some inner layer quantities. From the contact
surface condition, (11.10), we have

Ples = Pe, = O f’ooeuwa; Sea)
In addition, from the stagnation point condition, (11.12),

_eeoc.,uo:c = O (fooellce)

where Peoiq is value of density along axis in front of in-

e S s i i _amm il T 2l
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ternal shock, we find

Pi“ =. O (feo"o ua:L ng) (12.1)

Since entropy is conserved along streamlines, we can ecs-
tablish the order of magnitude of density in the internal

layer near the contact surface from (11.5)
0 ] i A x-
P‘/ﬁih = Pix/pct

For Me;332 , smm*8i = L the shock conditions, (11.7)
and (11.6),for th2 streamline which wets the contact sur-

face becone '
Peo * O(f°€°/€£o> Pie = O(foo.:o Uco:">

“there subscript o cdenotes normal shock location in bow
region., ‘hen substituted into the eatropy eouwation, (11.5),

the result is: \

Pies = O(ﬁ»;-, Sea/“:/e,_'o) (12.2)

From the second contact surface condition, (11.11), we find

d leg = eecs = Ve - |¢
T Tt o®)

mas
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This also requires that

Viu; = o(8e) (12.3)

near the contact surface, vhich is an upper bound on this
ratio. Another expression vhich can be utilizec is Bernoulli's
equation, (1l.4), 2long a streamline. Substituting (12.% €¢
12.3) into this equation and assuming U of the form
we & Ulggg & wg"

we obtain

uw: + ZUoo(,ui“ + O(Setuc:,: + detu_méu[")

+_§£§__L1_.O %‘30 fmdouwz(‘- 3._2-2/":> = Ueo ™

Therefore, we find that

ui = O(Sta(%)) (12.4)

Therefore, we can conclude tha+ for U, to be constant in the
first approximation in the above flow systern, it is neces-—
sary that ¥ #1 and Jebe stiall enough so that the ternm
S.z‘%ﬂ << O(1) . These are the same conditions which
are necessary for the external layer soluticn to be valid
near the contact surface; therefore, we assumne that this will

be the case in the present problea. This leads to the result

Wy = O(Uooi) (12.5)
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From the contact surface condition, (12.3), we find

.

Vi = 0(Uo: 3e) (12.6)

ey N v

e have now estadblished the orders of magnitude of all inte-

; rior variables of interest near the contact surface. ‘e now
postulate expansions for the variables based on these orcers
and then substitute them into the equations of motion to yield
a sequence of solutions, which can be summed to give the solu-
tion to any orcer of accuracy for the internal layer flow.

The expansions are for € (o= O o de » O ’ Moie > ©

Pi = P Usoi Se*Poi + -
Pi = Puic 3e’ PoifEo + "

Vi = W 8e Voi +

ui = Ueg + +

The first order set of equations is

QBst = © (13:1)
B = e 2;2;
g;_(P°‘/foL) =0 o3

(13.4)
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Integrating, we then have

Pei: & o) (14.1)
2 WAHV

Reg* = 2, L3 (14.2)

Poi = Poi Poiw/ Pol (14.3)

Combining (1k.1, 14.2 and 14.3), we obtain

\PJ‘tt
R - LB [ Poix dW; (14.1,)
s P J, "ot v

How that we have results for the internal and external flow,
we can combine them to determine the location of the shock
and contact surface, as well as find the values of the pro-

perties across the layers.

From the external flov, we have the results:

= \2 ~ a
e (B Bl o

P°‘¢s(§s.1 = Rcsa> = &%/2 Lok

Also from the internal flow, we have the result

\Pj'ct
1 = 2 Poix d W,
Po x) S, Foix L (14.4)

Since faguogg = fao:oUo:'c Ifrom the stagnation point con-

dition, then Poecs = Poix) . /e can now combine
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these relations (10.1, 10.2 and 14.4) from which property

variables can be determined.

Taking (10.1) and (14.4) we have

A o WJ.‘{.. R
F"'fsx’o)(R“ - Z-.fo ‘;‘2;4 ") = Oo/2
o Poees

Poee Rse = & + 2 [ BuxdW = (5D)

Combining (15.1) with (10.2), we then obtain for the shock

shape a second o:der non-linear differential equation

(%&‘ x &_,>Rs. =G + '25%;4% (15.2)

For W/Rs >> 1 , which is in the downstream region of

interest, (15.2) admits a solution of the form
~ 1
Ree = C x™ (15.3)

when (15.3) is substituted in (15.2), we find the value of

C to be given by

¥et
= (A{o-o + 16 ‘(J%’%tol‘% >V (15.4)
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Using (15.4) in (10.2) to find P°‘: (x) (14.4) then be-

comes

-~ w’g‘f x dV (15.5)
= 2 X - 5¢5
8 C: Rc’a' L ‘ﬁbt-.* :

Combining (15.4) and (15.5), we then obtain the following

expression for the contact surface shape in terms of the shock

shape

Res = Rso /(=58

1/2
(] ¥

La
Ve now have determined the values of Rse ’ Rcs in terms
Vet | |
of the functions & and fo avw d W . These
o L%

expressions are functions of the blunt interaction between
the external and internal layers at the extrene upstream
position in the bow region and are a result of the matching
of pressures across the upstream contact surface.

Wle, therefore, must postulate an upstream interaction based
on our solution for the bow region flow which is consistent

with the approximations made in this cdownstream region.

For the dovnstream analysis, we require €ls,Ee >0 H,‘.,)M%-ba:.
These limits must also be applied to our bow region matching
conditions which are the equality of pressure and flow deflec-

tion along the contact surface. Since our bow region internal
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flow is a perturbation of the case where the shock and body
surface are a spherical shell, for &¢o = o] , then we
make the approximation that the upstream interaction region
is spherical in nature. TFor the external flow, it is a well
established fact 35 that the downstream shock surface does not
depend on the details of the pressure distribution along the
contac. surface,but only on the total integrated pressure dis-
tribution (i.e., drag) in the axial direction, adding further
validity to the use of the above assumption. Along this sur-
face, the pressure induced by the internal flow must match
that of the external flow. To first order, which is the de-
gree of accuracy for the covwnstream region, the pressure change
across the shock layer is zero and, therefore, we can calcu-
late the pressure on the contact surface by simply finding
the pressure level behind a spherical shock surrounding the jet
flow source. For the case Mo.,;.>> 1 9 s\m ;. = 1 5
the expression for pressure behind the shock reduces to

P = Pest T Peol u:,: = Posy fwdou;.v.'

Pooco

Non-dimensionalized with respect to the external conditions,
this relation becomes

[] 9 z.
Pesc = Sy pamislal,

From the equality of stagnation pressures, this then reduces to

Pes¢ = £Ru = Pese

_P&c:o

1LL




From the source conditions, we have

n
= cos IR
Pese 26
With the pressure level and contact surface shape determined,
we have satisfiecd our matching criterqi}atand our next step is
G il
to calculate the functions 0, and j . dy.
[ O
Evaluating the integral from the internal layer solution, we
find
Wjo.f %.'-t WJ"{.
Poixe dW¢ = f cos"% / a dw, = ,{ dq}t’_
o foix - w/cos"OF o
600 4
cos" ﬂ'%_ sin
L 20 g 9

In this result, the upper integration limit renuires some d-s-

cussion. Strictly speaking, in order to calculate the pres-
sure and density distributions over the full range of 97
one would have to take account of the effect of the plume
boundary -~nd the mass flowirs in the plume boundary layer on
the internal shock. However, for highly underexpanded jets,
there is relatively little mass flowing in this layer and,
therefore, the integration of the abcve to the vacuum limit,
? = Oeo creates only a small error in the downstream

analysis. :

VWle now seek to determine the value of O . It can be shovm

that for 'i/Rs.'. ¢“ 1 our postulated initial blast wave be-
36

havior for the shock shape can be written as
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~ 1/ 1
Ree = 4E (g»_q)"x’*
To

Where I[, to our degrec of approximation can be written as

= Se - N
Ib H(¥e-1)(Xet+ 1)

In the above Con is the nose drag coefficient of a hypothe-
tical blunt nosed slender body, which takes on the shape of
the contact surface. C BN is directly related to the

blunt interaction and is written as

Sirnce we stipulated that Res/Rse = O as %/ Rese > ©

then equations(10.1) and (10.2) give

((A?%‘)z-* %%)ﬁs: =0%/2 a5 X/ Rsio =~ O

*

from wvhich Ce = CbpN

Ie
e now caiculate Cpn  t.:cd on our postulated upstream in-
teraction. For a spherical cshell interaction with the pres-

sure distribution given by

P = fmgumae Coshl%

20®
then

a—h

n-ﬁx = con @

and dA = 2T Rsio® sm@ d@

which 1leads 4o




Om
Con = M fcos"]%o,smfp‘ cos Pw d?&

.0

As in a previous integration, we use e as the upper limit of

integration instead of the exact result. In this case, we are
further substantiated in this approximation by the fact that
near eoo“'%the contributions from the above integrand to Con

are near zero due to the cos D factor in the above.

With the previously calculated values, the shock shape can

now be written as

e
(=) w St A co ﬂn & k
Rae = 2( %ﬁ*_j‘? P +f "o 0n ) X

H(¥e 1L X ¥e+1)
Also from (15.0) we have

co d% 1/2'
R Tt X )
Ra/ ST/

cos"_%os W@ d@,

We are now in a position to calculate layer properties based

on these results. For the external flow we have

CRe) + SReBe (1 - &))

Rz Cx® Po = &(1+ W)

with

This distribution will be valid throushout the external layer.

The dengity distribution is given by

T N = T T N T e R T e




Po = (1_ + \-(J*/Q))%/2_¢

ﬁ The result is not strictly valid since the density is not

i zero at the contact surface.

“hen referenced to values at the shock, the results become

[ R/fe = Va (L + W/ @) o (16:1)
| Po/Pe = Va (H/PN1 + W/D)  (16.2)
Te/"?g = Q/W* - (16.3)

For the internal flow, we have the following results:

Po: = CV8x . (16.4)
, = C¥Y8x (16.5)
Pei / e

V4
Vo = VIe/C Ld\l’/zx'/z:\[é___gzﬂf.xz (16.6)

When referenced to values at the shock, the above become

P/fe = Y2 (16:7)
2~ o "€ (16.8)
PP "8 Reedh

**% Not valid at contact surface
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The first order solution obtained thusfar from the hypersonic

small disturbance form of the Newton-Busemann approximation,
is adequate to describe layer thicknesses, pressures, and den-
sities in the far fielgd region near the contact surface. How-
ever, due to the assumption of ¥e:*lthe temperature to the
first approximation is in considerable error for Y/Rs »l.

This is because the expression for te'nperature, Te ( )
gives the unrealistic result that for all K/R‘ I-;.las ¥l
This result is acceptable for small >$/Rs y Where P/Ps is of

order one, however, for X/%‘N- % is small and even for ¥

near one 1. << 1 .
Ts

To obtain a more accurate value for temperature near the con-
tact surface, the unexpanded forms of the variables in terms
of ¥ will be retained. Referring to Cheng and Kirsch%, the

\3

L
unexpanded for ¥ results for the entropy v.ake are

R: - Res = /R (17.1)
Pe= P/ (17.2)

The retention of the exponent, Yoe, in 17.2),(17. 2) is justified

because the relative errors are smaller than any integral po-

wer of €. 31‘ Applying the same reasoning to the internal la-

yer expressions, (14.3), (14.4), we obtain

L @ Ve (17.3)
P Put) Pix
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Res = P" f%—‘l; d (17.4)

Hatching (17.1) to the near shock layer results (6.1) and
then combining with (17.4) we obtain

er(ﬁs: ‘Rc:> = o/

This 1s the same form as expression (10.1) with Po replaced
by Pe - To the accuracy needed for X/Rs- 1 it is ade-
quate to use the formal result (10.1) which utilizes Po in-

stead of Pe . However, for the distribution of temperature,

we use

:-Fs‘ = (%s')t;}- (17.5)

for both the external near the contact surface and internal
flow. This expressicn will give accurate values of; for
s

small P/Ps as well as for P/Ps near one. To be consistent,

we also use the density expression

(,% )1/‘ (17.6)

instead of .P = fs p/Ps

Making use of (17.5) and (17.6) and the expression for pres-

sure (16.1) the temperature and density distributions near

the contact surface for the external flow and within the in-

ternal layer are
T = 'l‘s(_c.‘_‘)tg"h |
P = fs<_c:_)
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The above expressions, as well as those previously found, are
usec to predict zeometry and flow properties in the far field

region for typical systems of interest.
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DISCUSSION OF RESULTS

Examining the far field analytic solution, we find that an
experimental simplation of an actual flow requires matching

83 , 8¢ , O, N and Rs.,‘. , the same scaling parameters used
in the .bow region simulation. If, in addition to the above,

Poj/Pq,e is metched then the bow, corner and far field geo-

metry will be simulated. For a given system with fixed am-

bient and exhaust gas composition (i.e.,8=:xj fixed) and noz-

zle conditions (i.e.,©e,n ) the flow geometry will scale as

does the bow region with Rs.:O or Tf‘h. If Moeis also as-

sumed to be fixed, then the bow, corner and far field regions

will all scale with Rsi . Calculations of far field flow

geometry and properties have been carried out and the results

appear in figures (21) to (24). As in the bow analysis, the ’
far field geometry is sensitive to the exponent used in the |

exhaust plume model. From figures (21) and (22) it can be ob-

served that the internal layer occupies a large fraction of the
shock layer flow. This is due to the greater amount of str—
ongly shocked, and hence lower density, gas in the internal

flow compared to that in the external flow.

As shown in figures (21) and (22), increasing ©cw or Xj re-
sults in the moving outward of the shock and contact surfaces.

This behavior is consistent with the results from the bow re-

gion. Also, near the contact surface, temperature, pressure,

and densityfor the internal and external flcw increase for

increases in ©e or &j . .‘1

119




r—?v_ww D e o e o T TR A I T N, T
t
'

o e o

The effect of the internal layer flow on.the external flow
pressure, density, and temperature is to maintain them at a
higher level than that created by just the bow interaction.
This can be seen from expression 15.4 in the far field analy-
sis section where the coefficient for the pressure decay
expression consists'bf the normal bow interaction term plus

the effect of inner layer thickness.

In figures (23) and (24) the detailed property distributions
across the layersare given for the same "cold" jet and actual

jet cases that were analyzed in the bow section.

Consistent with thc bow region results, we find that the act-
ual jet case shown in figure (24) has 2 hot, low density ex-
ternal layer, which flows over a cooler and more dense inner
layer. 1If allowed, considerable heat transfer and mixing bet-
ween the external ana iniérnal layers woﬁld occur. The "cold"
jet case does not exhibit as sharp a change in flow proper-

ties across the contact surface as that of the actual case.

This indicates that "cold" jet experiments must be interpreted
carefully in light of the greater mixing and heat trans-

fer effects for the actual system versus the "cold" jet simu-

lation.,




CONCLUSIONS

Analytical techniques for predicting flow properties in the bow
and far field regions of an opposed hypersonic plume in a hy-
personic stream have been developed. It has been shown that
they are valid for a wide range of altitude and jet thrusts

for tyéical systems. The influence of the corner rezion Ilow
on the bow and far field flow p.redictions has been shown to be
negligible. Consequently, only a qualitative outline of the

flow processes in this region are given.

Some of the major results of the analyses and calculations

are:
1. Experimental simulation depends on the matching of
Se, xj', B, N, Rsio ) P°j/Pooe

2, For a given system with fixed ambient and exhaust
composition, external lfach number and nozzle con-
ditions (i.e., fixed ¥e,¥;,0m,n,Mwe) the entire flow
geometry will scale with Rs.,’,or Tf‘,z' .

3. This analysis confirms the good accuracy of,the
Newtonian impact analysis when applied to the axi-
symmetric bow region, and suggests that the extension
of this simple technique to predict asymmetric bow
geometry might be successful.

L. The bow and far field solutions are sensitive to the
exhaust plume model exponent used and consequently

for accurate predictions of flow properties an accu-

rate plume model must be utiliced.




5. Penetration of the intercepting shock layer flow into
the internal layer is considerable. However, the
influence on the bow and far field properties is
small.

O. Good agreement is found between a calculated bow re-

| gion geometry and an experimental result.

7. Calculations show that mixing and heat transfer ef-
fects between the hot external and cooler internalﬂf
layers are more pronounced in the actual case then in
the experimental "cold" jet simulation.

8. Increasing the primary systenm design parameters oo
and 8} * with all other parameters fixed results in

a. The thickening of internal and external layers
in the bow and far field regions

b. An increase in radius of curvature of the con-
tact surface and thereby an increase in bluntness

for the bow region

C. An increase in the angle between the far field

external shock and free stream direction

de A higher level of pressure density and tem=

perature both across and along the internal and

external layer flows.

¥ @e 15 related to nozzlo exlt ..ach numder and angle and
exhaust gas composition. For a fixed composition, increasing
nozzle exit angle or decreasing exit i'ach number gives in-
creases in O« , J is related to exhaust gas composition
which in general will decrease as the degrees of freedom or
the complexity of the exhaust molecules increase.
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9, The effect of the internal layer on the far field
region properties is to maintain the pressure, den-
sity, and temperature of the flow at a higher level
than that which would be created by the bow region
interaction with thre far field internal layer flow
absent.

For high Reynolds' number flows the present technique may be
extended to treat mixing effects along the contact surface
by the use of boundary layer methods. Also, equilibrium chem-
istry effects may be easily incorporated into the present mo-

del through use of Ilollier charts.

Further extension of the bow layer technique to include vis-
cous chemically reacting &and merged layer effects requires
considerably more effort than tﬂe above extensic.s. In this
regard, an advantage of the present technique over the numer-
ical technique of reference (7) is that a complete solution of
the bow region requires approximately 13 seconds on an I3lI
360-65, whereas the numerical technique requires 120 seconds
on the much faster CDC 6600. This economy may prove to be
significant in extending the above techniques to be able to
predict viscous chemically reacting or merged layer bow pro-
perties where an order of magnitude increase in computational
times is expected. This makes the technique of reference (7)
uneconomical for use in parametric calculations whereas the
present technique would still fall within the practical time

limitation for these calculations.
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Appendix (A)
Bow Initializing Scheme

To integrate the bow region equations .for points away from
the axis, we must first obtain the initial radii of curva-
tures and positions of the shocks at the axis. Writing equa-
tions (28.1), (28.2), (58.1) and (58.2) in the form

&; = Ada!) + B(ac)@cl (1)
Pi = C@o + b §;* ()
Ye = AQe) + Ble) gbe" (3)
Pe = Ctae) + Bae) @ez (4)

P

-~ -3
we develop exprassions for QL/QQ and shock radii of curva-

tures Rsco/R“ « The gec;metry which relates the internal

flow parameters to those of the external flow is illustrated

in schematic (5)

/
Schematic (5) an ¥ -4
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In the above illustration

Ra= Rec (1 + a:Fi* + AL +(BG)FE) (5)
= Ree (1 + achet - Fae) - Baod§r ) (6)

Referring to schematic (5) we can write for

Angle matching

v = @e + 2(ac+ B'-2q: A)‘?t/(“‘\) 2
@ 2(ae + 200R =~ B)Pe/(1-B) (7

Pressure liat ching

Y2
(8)
@e/@» BC)

S~
#Je now have two equaticns with three unknowns @‘/@3; y Qe, A
Consequently, we must relax one of the parameters Q./, Qe
in orcder to obtain a unique solution. Choosing Q¢ = 0 the

expressions for A4 (al), B (@), C ( Q) and D (@) simplify

considerably.

Substituting (8) into (7) we obtain Qe which also gives @e/s’ﬁ[.
From these results the ratio of shock radii of curvatures at
the axis, Rs“o /Rse y and the relative position of their cen-
ters must be obtained. Referring once again to schematic (5)

we have from geometry

sin(r-9:) = swé@.g = sm@;,;/—é\.é

Re

For small values of the angles we can write

A;_ -Aﬁ- c—-— Aet)
%:_%r_ﬁl (ae ~B)T

sio (1 +~ A + BP2)




For the initial point, R“/Rs;'o can be obtained.

The distance between their centers is then given by
E-ECR
e Se L
Having obtained the ratio of the radii of curvatures and
their relative positions at the axis, we then use these quan-

tities as input data to the computer program, which predicts

bow properties for regions away from the axis of symmetry.

e

e
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